Diseño de un circuito integrado con fotodiodos de doble juntura para inmunoensayos ópticos
Resumen
Palabras clave
Referencias
D. Caputo, G. de Cesare, A. Nascetti, R. Negri, y R. Scipinotti., “Amorphous silicon sensors for single and multicolor detection of biomolecules,” IEEE Sensors Journal, vol. 7, no. 9, 2007.
A. Pereira, P. Novo, D. Prazeres, V. Chu, y J. Conde, “Heterogeneous immunoassays in microfluidic format using fluorescence detection with integrated amorphous silicon photodiodes,” Biomicrofluidics, vol. 5, no. 14102, 2011.
A. Pimentel, D. Prazeres, V. Chu, y J. Conde, “Fluorescence detection of dna using an amorphous silicon p-i-n photodiode,” Journal of Applied Physics, vol. 104, no. 054913 - 054913, 2008.
——, “Detection of fluorescently labeled biomolecules immobilized on a detachable substrate using an integrated amorphous silicon photodetector,” Applied Physics Letters, vol. 94, no. 164106 - 164106, 2009.
Z. Zhan, B. Zhou, Z. Fu, F. Bright, A. Cartwright, C. Bartsch, y A. Titus, “Filterless optical oxygen sensor based on a cmos buried double junction photodiode,” Sensors and Actuators B: Chemical, vol. 176, no. 729-735, 2013.
S. Feruglio, G. Lu, P. Garda, y G. Vasilescu, “A review of the cmos buried double junction (bdj) photodetector and its applications,” Sensors (Basel), vol. 8(10), no. 6566-6594, 2008.
F. Nabki, T. A. Dusatko, S. Vengallatore, y M. N. El-Gamal., “Low-stress cmos-compatible silicon carbide surface-micromachining technology—part i: Process development and characterization,” Journal of Microelectromechanical Systems, vol. 20, no. 3, pp. 720–729, 2011.
F. Nabki, P. Cicek, T. A. Dusatko, y M. N. El-Gamal, “Low-stress cmos-compatible silicon carbide surface-micromachining technology—part ii: Beam resonators for mems above ic,” Journal of Microelectromechanical Systems, vol. 20, no. 3, pp. 730–744, 2011.
M. Dandin, P. Abshire, y E. Smela, “Optical filtering technologies for integrated fluorescence sensors,” Lab Chip, vol. 7, no. 8, pp. 955–977, 2007.
Y. Maruyama, K. Sawada, H. Takao, y M. Ishida, “The fabrication of filter-less fluorescence detection sensor array using cmos image sensor technique,” Sensors and Actuators A: Physical, vol. 128, no. 1, pp. 66–70, 2006.
D. Wild, The Immunoassay Handbook, Elsiever Science, 2013.
L. Gervais y E. Delamarche, “Toward one-step point-of-care immuno-diagnostics using capillary-driven microfluidics and pdms substrates,” Lab Chip, vol. 9, no. 23, pp. 3330–3337, 2009.
“Blue-Violet Laser Diode DL-5146-101S,” Thor Labs. [En lı́nea]. Disponible en: https://www.thorlabs.com/thorproduct.cfm?partnumber=DL5146-101S.
T. Kamei, K. Sumitomo, S. Ito, R. Takigawa, N. Tsujimura, H. Kato, T. Kobayashi, y R. Maeda, “Heterogeneously integrated laser-induced fluorescence detection devices: Integration of an excitation source,” Japanese Journal of Applied Physics, vol. 53, 2014.
T. Ruckstuhl, C. Winterflood, y S. Seeger, “Supercritical angle fluorescence immunoassay platform,” Analytical chemistry, vol. 83, pp. 2345–2350, 2011.
“Qdot® ITKTM Carboxyl Quantum Dots,” Thermofisher.
M. Hembury, N. Beztsinna, H. Asadi, J. van den Dikkenberg, J. Meeldijk, W. Hennink, y T. Vermonden, “Luminescent gold nanocluster-decorated polymeric hybrid particles with assembly-induced emission” Biomacromolecules, vol. 19, no. 7, pp. 2841–2848, 2018.
Y. Chen, T. Hsu, C. Chen, y C. Hsieh, “A current-mode differential sensing cmos imager for optical linear encoder,” International Symposium on VLSI Design, Automation and Test (VLSI-DAT), pp. 1–2, 2019.
L. N. Alves y R. L. Aguiar, “Frequency behavior of classical current mirrors [cmos],” in 9th International Conference on Electronics, Circuits and Systems, vol. 1, 2002, pp. 189–192 vol.1.
Z. Wang, “Current-mode lowpass filters in cmos technology,” Microelectronics Journal, vol. 23, no. 6, pp. 479–481, 1992.
R. Sarpeshkar, Ultra Low Power Bioelectronics. New York, USA: Cambridge University Press, 2010.
S. Liu y R. J. Baker., “Process and temperature performance of a cmos beta-multiplier voltage reference,” Midwest Symposium on Circuits and Systems, pp. 33–36, 1998.
P. Gray y R. Meyer, Analysis and Design of Analog Integrated Circuits, 5th ed. USA: Wiley, 2009.
A. Hastings, The Art of Analog Layout, 2nd ed. USA: Pearson Prentice Hall, 2005.
M. Pelgrom, A. Duinmaijer, y A. Welbers, “Matching properties of mos transistors,” IEEE Journal of Solid-State Circuits, vol. 24, no. 5, pp. 1433–1439, 1989.
L. Currie, “Detection and quantification limits: origins and historical overview,” Analytica Chimica Acta, vol. 391, no. 2, pp. 127–134, 1999.
“IUPAC analytical compendium (eq. (18.4.13)),” IUPAC. [En lı́nea]. Disponible en: http://publications.iupac.org/analytical compendium/Cha18sec437.pdf
DOI: https://doi.org/10.37537/rev.elektron.4.2.103.2020
Enlaces de Referencia
- Por el momento, no existen enlaces de referencia
Copyright (c) 2020 Juan Pablo Goyret, Segundo Molina Abeniacar

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Revista elektron, ISSN-L 2525-0159
Facultad de Ingeniería. Universidad de Buenos Aires
Paseo Colón 850, 3er piso
C1063ACV - Buenos Aires - Argentina
revista.elektron@fi.uba.ar
+54 (11) 528-50889