Design of an integrated circuit with buried double junction photodiodes for optical immunoassays

Authors

  • Juan Pablo Goyret Facultad de Ingeniería de la Universidad de Buenos Aires
  • Segundo Molina Abeniacar Facultad de Ingeniería de la Universidad de Buenos Aires

DOI:

https://doi.org/10.37537/rev.elektron.4.2.103.2020

Keywords:

immunoassays, photodiodes, Point-of-Care, CMOS

Abstract

Optical immunoassays require measurement systems capable of distinguishing the light from the laser source, used to illuminate the assay, from the light generated by the particles contained within the assay itself (fluorescence). The main challenge is that the light used to excite the sample is several orders of magnitude more intense than that generated by fluorescence. Usually, single junction photodiodes and optical filters are used. The sensitivity of these schemes is limited by the filter performance. In this work, the design of a CMOS integrated circuit including buried double junction photodiodes (BDJ) is presented. This approach allows the measurement of both light sources simultaneously. From simulations, it is shown that this integrated circuit with BDJ would achieve a better detection limit than the scheme based on single-junction photodiodes of equivalent silicon area.  Furthermore, integrating the photodetectors and the reading circuit on the same chip would make the system suitable to be used in biomedical applications such as Point-of-Care (POC) devices.

Downloads

Download data is not yet available.

References

D. Caputo, G. de Cesare, A. Nascetti, R. Negri, y R. Scipinotti., “Amorphous silicon sensors for single and multicolor detection of biomolecules,” IEEE Sensors Journal, vol. 7, no. 9, 2007.

A. Pereira, P. Novo, D. Prazeres, V. Chu, y J. Conde, “Heterogeneous immunoassays in microfluidic format using fluorescence detection with integrated amorphous silicon photodiodes,” Biomicrofluidics, vol. 5, no. 14102, 2011.

A. Pimentel, D. Prazeres, V. Chu, y J. Conde, “Fluorescence detection of dna using an amorphous silicon p-i-n photodiode,” Journal of Applied Physics, vol. 104, no. 054913 - 054913, 2008.

——, “Detection of fluorescently labeled biomolecules immobilized on a detachable substrate using an integrated amorphous silicon photodetector,” Applied Physics Letters, vol. 94, no. 164106 - 164106, 2009.

Z. Zhan, B. Zhou, Z. Fu, F. Bright, A. Cartwright, C. Bartsch, y A. Titus, “Filterless optical oxygen sensor based on a cmos buried double junction photodiode,” Sensors and Actuators B: Chemical, vol. 176, no. 729-735, 2013.

S. Feruglio, G. Lu, P. Garda, y G. Vasilescu, “A review of the cmos buried double junction (bdj) photodetector and its applications,” Sensors (Basel), vol. 8(10), no. 6566-6594, 2008.

F. Nabki, T. A. Dusatko, S. Vengallatore, y M. N. El-Gamal., “Low-stress cmos-compatible silicon carbide surface-micromachining technology—part i: Process development and characterization,” Journal of Microelectromechanical Systems, vol. 20, no. 3, pp. 720–729, 2011.

F. Nabki, P. Cicek, T. A. Dusatko, y M. N. El-Gamal, “Low-stress cmos-compatible silicon carbide surface-micromachining technology—part ii: Beam resonators for mems above ic,” Journal of Microelectromechanical Systems, vol. 20, no. 3, pp. 730–744, 2011.

M. Dandin, P. Abshire, y E. Smela, “Optical filtering technologies for integrated fluorescence sensors,” Lab Chip, vol. 7, no. 8, pp. 955–977, 2007.

Y. Maruyama, K. Sawada, H. Takao, y M. Ishida, “The fabrication of filter-less fluorescence detection sensor array using cmos image sensor technique,” Sensors and Actuators A: Physical, vol. 128, no. 1, pp. 66–70, 2006.

D. Wild, The Immunoassay Handbook, Elsiever Science, 2013.

L. Gervais y E. Delamarche, “Toward one-step point-of-care immuno-diagnostics using capillary-driven microfluidics and pdms substrates,” Lab Chip, vol. 9, no. 23, pp. 3330–3337, 2009.

“Blue-Violet Laser Diode DL-5146-101S,” Thor Labs. [En lı́nea]. Disponible en: https://www.thorlabs.com/thorproduct.cfm?partnumber=DL5146-101S.

T. Kamei, K. Sumitomo, S. Ito, R. Takigawa, N. Tsujimura, H. Kato, T. Kobayashi, y R. Maeda, “Heterogeneously integrated laser-induced fluorescence detection devices: Integration of an excitation source,” Japanese Journal of Applied Physics, vol. 53, 2014.

T. Ruckstuhl, C. Winterflood, y S. Seeger, “Supercritical angle fluorescence immunoassay platform,” Analytical chemistry, vol. 83, pp. 2345–2350, 2011.

“Qdot® ITKTM Carboxyl Quantum Dots,” Thermofisher.

M. Hembury, N. Beztsinna, H. Asadi, J. van den Dikkenberg, J. Meeldijk, W. Hennink, y T. Vermonden, “Luminescent gold nanocluster-decorated polymeric hybrid particles with assembly-induced emission” Biomacromolecules, vol. 19, no. 7, pp. 2841–2848, 2018.

Y. Chen, T. Hsu, C. Chen, y C. Hsieh, “A current-mode differential sensing cmos imager for optical linear encoder,” International Symposium on VLSI Design, Automation and Test (VLSI-DAT), pp. 1–2, 2019.

L. N. Alves y R. L. Aguiar, “Frequency behavior of classical current mirrors [cmos],” in 9th International Conference on Electronics, Circuits and Systems, vol. 1, 2002, pp. 189–192 vol.1.

Z. Wang, “Current-mode lowpass filters in cmos technology,” Microelectronics Journal, vol. 23, no. 6, pp. 479–481, 1992.

R. Sarpeshkar, Ultra Low Power Bioelectronics. New York, USA: Cambridge University Press, 2010.

S. Liu y R. J. Baker., “Process and temperature performance of a cmos beta-multiplier voltage reference,” Midwest Symposium on Circuits and Systems, pp. 33–36, 1998.

P. Gray y R. Meyer, Analysis and Design of Analog Integrated Circuits, 5th ed. USA: Wiley, 2009.

A. Hastings, The Art of Analog Layout, 2nd ed. USA: Pearson Prentice Hall, 2005.

M. Pelgrom, A. Duinmaijer, y A. Welbers, “Matching properties of mos transistors,” IEEE Journal of Solid-State Circuits, vol. 24, no. 5, pp. 1433–1439, 1989.

L. Currie, “Detection and quantification limits: origins and historical overview,” Analytica Chimica Acta, vol. 391, no. 2, pp. 127–134, 1999.

“IUPAC analytical compendium (eq. (18.4.13)),” IUPAC. [En lı́nea]. Disponible en: http://publications.iupac.org/analytical compendium/Cha18sec437.pdf

Published

2020-12-14

Issue

Section

Student Articles