
consideradas las diversas fuentes de ruido que deterioran
la performance del sistema, tanto para fotodiodos de una
juntura como de dos junturas, se concluy
´
o que el sistema de
doble juntura tiene una mayor sensibilidad. Esta mejora fue
observada principalmente en el l
´
ımite de detecci
´
on (10 veces
m
´
as bajo que usando fotodiodos de una sola juntura) y en
menor medida en el l
´
ımite de cuantificaci
´
on.
En conclusi
´
on, este trabajo constituye una propuesta para
un circuito integrado capaz de ser utilizado en un inmu-
noensayo
´
optico; producto de una investigaci
´
on bibliogr
´
afica
sobre los requerimientos y condiciones de este tipo de
aplicaci
´
on. Como perspectiva a futuro y con el objetivo
de corroborar las hip
´
otesis supuestas y el funcionamiento
pr
´
actico del sistema, los siguientes pasos en esta l
´
ınea de
trabajo ser
´
an: el desarrollo del layout del chip, su fabri-
caci
´
on, el armado del dispositivo, y su posterior calibraci
´
on
y medici
´
on.
REFERENCIAS
[1] D. Caputo, G. de Cesare, A. Nascetti, R. Negri, y R. Scipinotti.,
“Amorphous silicon sensors for single and multicolor detection of
biomolecules,” IEEE Sensors Journal, vol. 7, no. 9, 2007.
[2] A. Pereira, P. Novo, D. Prazeres, V. Chu, y J. Conde, “Heterogeneous
immunoassays in microfluidic format using fluorescence detection
with integrated amorphous silicon photodiodes,” Biomicrofluidics,
vol. 5, no. 14102, 2011.
[3] A. Pimentel, D. Prazeres, V. Chu, y J. Conde, “Fluorescence detection
of dna using an amorphous silicon p-i-n photodiode,” Journal of
Applied Physics, vol. 104, no. 054913 - 054913, 2008.
[4] ——, “Detection of fluorescently labeled biomolecules immobilized
on a detachable substrate using an integrated amorphous silicon
photodetector,” Applied Physics Letters, vol. 94, no. 164106 - 164106,
2009.
[5] Z. Zhan, B. Zhou, Z. Fu, F. Bright, A. Cartwright, C. Bartsch, y
A. Titus, “Filterless optical oxygen sensor based on a cmos buried
double junction photodiode,” Sensors and Actuators B: Chemical, vol.
176, no. 729-735, 2013.
[6] S. Feruglio, G. Lu, P. Garda, y G. Vasilescu, “A review of the
cmos buried double junction (bdj) photodetector and its applications,”
Sensors (Basel), vol. 8(10), no. 6566-6594, 2008.
[7] F. Nabki, T. A. Dusatko, S. Vengallatore, y M. N. El-Gamal., “Low-
stress cmos-compatible silicon carbide surface-micromachining tech-
nology—part i: Process development and characterization,” Journal of
Microelectromechanical Systems, vol. 20, no. 3, pp. 720–729, 2011.
[8] F. Nabki, P. Cicek, T. A. Dusatko, y M. N. El-Gamal, “Low-
stress cmos-compatible silicon carbide surface-micromachining tech-
nology—part ii: Beam resonators for mems above ic,” Journal of
Microelectromechanical Systems, vol. 20, no. 3, pp. 730–744, 2011.
[9] M. Dandin, P. Abshire, y E. Smela, “Optical filtering technologies for
integrated fluorescence sensors,” Lab Chip, vol. 7, no. 8, pp. 955–977,
2007.
[10] Y. Maruyama, K. Sawada, H. Takao, y M. Ishida, “The fabrication of
filter-less fluorescence detection sensor array using cmos image sensor
technique,” Sensors and Actuators A: Physical, vol. 128, no. 1, pp.
66–70, 2006.
[11] D. Wild, The Immunoassay Handbook, Elsiever Science, 2013.
[12] L. Gervais y E. Delamarche, “Toward one-step point-of-care immuno-
diagnostics using capillary-driven microfluidics and pdms substrates,”
Lab Chip, vol. 9, no. 23, pp. 3330–3337, 2009.
[13] “Blue-Violet Laser Diode DL-5146-101S,” Thor Labs. [En
l
´
ınea]. Disponible en: https://www.thorlabs.com/thorproduct.cfm?
partnumber=DL5146-101S
[14] T. Kamei, K. Sumitomo, S. Ito, R. Takigawa, N. Tsujimura, H. Kato,
T. Kobayashi, y R. Maeda, “Heterogeneously integrated laser-induced
fluorescence detection devices: Integration of an excitation source,”
Japanese Journal of Applied Physics, vol. 53, 2014.
[15] T. Ruckstuhl, C. Winterflood, y S. Seeger, “Supercritical angle
fluorescence immunoassay platform,” Analytical chemistry, vol. 83,
pp. 2345–2350, 2011.
[16] “Qdot® ITK™ Carboxyl Quantum Dots,” Thermofisher.
[17] M. Hembury, N. Beztsinna, H. Asadi, J. van den Dikkenberg, J. Meel-
dijk, W. Hennink, y T. Vermonden, “Luminescent gold nanocluster-
decorated polymeric hybrid particles with assembly-induced emis-
sion,” Biomacromolecules, vol. 19, no. 7, pp. 2841–2848, 2018.
[18] Y. Chen, T. Hsu, C. Chen, y C. Hsieh, “A current-mode differential
sensing cmos imager for optical linear encoder,” International Sym-
posium on VLSI Design, Automation and Test (VLSI-DAT), pp. 1–2,
2019.
[19] L. N. Alves y R. L. Aguiar, “Frequency behavior of classical current
mirrors [cmos],” in 9th International Conference on Electronics,
Circuits and Systems, vol. 1, 2002, pp. 189–192 vol.1.
[20] Z. Wang, “Current-mode lowpass filters in cmos technology,” Micro-
electronics Journal, vol. 23, no. 6, pp. 479–481, 1992.
[21] R. Sarpeshkar, Ultra Low Power Bioelectronics. New York, USA:
Cambridge University Press, 2010.
[22] S. Liu y R. J. Baker., “Process and temperature performance of a cmos
beta-multiplier voltage reference,” Midwest Symposium on Circuits
and Systems, pp. 33–36, 1998.
[23] P. Gray y R. Meyer, Analysis and Design of Analog Integrated
Circuits, 5th ed. USA: Wiley, 2009.
[24] A. Hastings, The Art of Analog Layout, 2nd ed. USA: Pearson
Prentice Hall, 2005.
[25] M. Pelgrom, A. Duinmaijer, y A. Welbers, “Matching properties of
mos transistors,” IEEE Journal of Solid-State Circuits, vol. 24, no. 5,
pp. 1433–1439, 1989.
[26] L. Currie, “Detection and quantification limits: origins and historical
overview,” Analytica Chimica Acta, vol. 391, no. 2, pp. 127–134,
1999.
[27] “IUPAC analytical compendium (eq. (18.4.13)),” IUPAC. [En l
´
ınea].
Disponible en: http://publications.iupac.org/analytical
compendium/
Cha18sec437.pdf
Revista elektron, Vol. 4, No. 2, pp. 114-125 (2020)
http://elektron.fi.uba.ar