Illumination system for optoacoustic imaging based on LEDs and EDU-CIAA
DOI:
https://doi.org/10.37537/rev.elektron.4.2.107.2020Keywords:
optoacústica, LED, sistema embebidoAbstract
Optoacoustic imaging is a hybrid technique that benefits from both the versatile optical contrast and the high spatial resolution associated with the low propagation dispersion of ultrasonic waves. Usually, high energy lasers (> 10 mJ) are used as a light source which are expensive, non-portable and have a low repetition rate (~20 Hz). In recent years, the use of light-emitting diodes (LEDs) as substitute has been studied because of they are less expensive, more reliable and compact, and they can provide thousands of pulses in a second for real-time imaging. This paper presents the implementation of an illumination system based on LEDs and the embedded system EDU-CIAA. The developed system is capable of emitting short light pulses (< 1 us) with great intensity and high frequency (> 1 kHz).Downloads
References
M. Xu and L. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum., vol. 77, pp. 041 101–1–23, 2006.
L. V. Wang, “Tutorial on photoacoustic microscopy and computed tomography,” IEEE J. of Selected Topics in Quantum Electronics, vol. 14, pp. 171–179, 2008.
J. Bauer-Marschallinger, K. Felbermayer, and T. Berer, “All-optical photoacoustic projection imaging,” J. Biomed. Opt. Express, vol. 8, pp. 3938–3951, 2017.
G. Paltauf, P. Hartmair, G. Kovachev, and R. Nuster, “Piezoelectric line detector array for photoacoustic tomography,” Photoacoustics, vol. 8, pp. 28–36, 2017.
A. Hariri, J. Lemaster, J. Wang, A. Jeevarathinam, D. Chao, and J. Jokerst, “The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging,” Photoacoustics, vol. 9, pp. 10–20, 2018.
P. Upputuri and M. Pramanik, “Fast photoacoustic imaging systems using pulsed laser diodes: a review,” Biomed. Eng. Lett., vol. 2018, pp. 167–181, 2018.
R. Ma, A. Taruttis, V. Ntziachristos, and D. Razansky, “Multispectral optoacoustic tomography (msot) scanner for whole-body small animal imaging,” Opt. Express, vol. 17, pp. 21 414–1–13, 2009.
S. Agrawal, C. Fadden, A. Dangi, X. Yang, H. Albahrani, N. Frings, S. Zadi, and S. Kothapalli, “Light-emitting-diode-based multispectral photoacoustic computed tomography system,” Sensors, vol. 19, pp. 4861–1–13, 2019.
H. Zhong, T. Duan, H. Lan, M. Zhou, and F. Fao, “Review of low-cost photoacoustic sensing and imaging based on laser diode and light-emitting diode,” Sensors, vol. 18, pp. 1–24, 2018.
T. Allen and P. Beard, “High power visible light emitting diodes as pulsed excitation sources for biomedical photoacoustics,” Biomed. Opt. Express, vol. 7, pp. 1261–1270, 2016.
M. Singh. (Editor), LED-Based Photoacoustic Imaging. Springer, 2020.
“Proyecto computadora industrial abierta argentina,” Argentina. [Online]. Available: http://www.proyecto-ciaa.com.ar/
M. G. Gonzalez, B. Abadi, L. C. Brazzano, and P. Sorichetti, “Linear piezoelectric sensor for optoacoustic tomography: electroacoustic characterization,” in Proc. IEEE Argencon, 2018, pp. 1–4.
M. G. Gonzalez, P. Sorichetti, and G. Santiago, “Reducing the capacitance of piezoelectric film sensors,” Rev. Sci. Instrum., vol. 87, pp. 045 003–1–5, 2016.
R. Insabella, M. Gonzalez, E. Acosta, and G. Santiago, “Dielectric antenna effects in integrating line piezoelectric sensors for optoacoustic imaging,” Meas. Sci. and Tech., vol. 31, p. 125103, 2020.
R. Insabella, M. Gonzalez, L. Riobo, K. Hass, and F. Veiras, “Software-defined optoacoustic tomography,” Appl. Opt., vol. 59, pp. 706–711, 2020.
“LED-CBT-120-G-C11 datasheet,” Luminus. [Online]. Available: https://download.luminus.com/datasheets/Luminus
“MOSFET-IRF8707 datasheet,” International Rectifier. [Online]. Available: https://www.infineon.com/dgdl/irf8707pbf.pdf?fileId=5546d462533600a40153560d57f81d6b
“MOSFET driver TC4427 datasheet,” Microchip Technology. [Online]. Available: https://www.microchip.com/wwwproducts/en/TC4427
M. G. Gonzalez, L. Riobo, L. C. Brazzano, F. Veiras, P. Sorichetti, and G. Santiago, “Generation of sub-microsecond quasi-unipolar pressure pulses,” Ultrasonics, vol. 98, pp. 15–19, 2019.
M. G. Gonzalez, E. Acosta, and G. Santiago, “Simple method to determine the resolution and sensitivity of systems for optoacoustic tomography,” Revista Elektron, vol. 2, pp. 63–66, 2018.
P. Ninni, F. Martelli, and G. Zaccanti, “The use of india ink in tissue-simulating phantoms,” Opt. Express, vol. 18, no. 26, pp. 26 854–1–12, 2010.
“Laser Energy Sensor datasheet,” Coherent. [Online]. Available: https://www.coherent.com/measurement-control/measurement/multi purpose-energymax-sensors
“Optical receiver 818-BB-21 datasheet,” Newport. [Online]. Available: https://www.newport.com/p/818-BB-21A
“High Speed Current Amplifier datasheet,” FEMTO. [Online]. Available: https://www.femto.de/images/pdf-dokumente/de-hca-100m-50k-c.pdf
K. Mackenzie, “Nine-term equation for sound speed in the oceans,”J. Acousti. Soc. Am., vol. 70, pp. 807–812, 1981.
P. Binh, V. Trong, P. Renucci, and X. Marie, “A simple sub-nanosecond ultraviolet light pulse generator with high repetition rateand peak power,”Rev. Sci. Instrum., vol. 84, pp. 083 102–1–7, 2013.
“LTspice,”AnalogDevices.[Online].Avail-able:https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html
T. Kishi, H. Tanaka, Y. Umeda, and O. Takyu, “A high-speedLED driver that sweeps out the remaining carriers for visible light communications, ”J. Lightw. Technol., vol. 32, pp. 239–248, 2014.
H. Halbritter, C. Jaeger, R. Weber, M. Schwind, and F. Moellmer, “High-speed LED driver for ns-pulse switching of high-current leds,”IEEE Photonics Tech. Lett., vol. 26, pp. 1871–1873, 2014.
H. Zhang, K. Kondo, M. Yamakawa, and T. Shiina, “Simultane-ous multispectral coded excitation using periodic and unipolar m-sequences for photoacoustic imaging,” inProc. SPIE, vol. 8581, no 85812Y, 2013.
“CyberdyneAcousticX,”Japan.[Online]. Available: https://www.cyberdyne.jp/english/products/pdf/AcousticX-flyer-A4Size-English.pdf
Downloads
Published
Issue
Section
License
The authors who publish in this journal agree with terms established in the license Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)