AGRADECIMIENTOS
Este trabajo fue apoyado por los subsidios de la ANPCyT
(PICT 2016-2204 y PICT 2018-04589) y de la Universidad
de Buenos Aires (UBACyT 20020190100032BA).
REFERENCIAS
[1] M. Xu and L. Wang, “Photoacoustic imaging in biomedicine,” Rev.
Sci. Instrum., vol. 77, pp. 041 101–1–23, 2006.
[2] L. V. Wang, “Tutorial on photoacoustic microscopy and computed
tomography,” IEEE J. of Selected Topics in Quantum Electronics,
vol. 14, pp. 171–179, 2008.
[3] J. Bauer-Marschallinger, K. Felbermayer, and T. Berer, “All-optical
photoacoustic projection imaging,” J. Biomed. Opt. Express, vol. 8,
pp. 3938–3951, 2017.
[4] G. Paltauf, P. Hartmair, G. Kovachev, and R. Nuster, “Piezoelectric
line detector array for photoacoustic tomography,” Photoacoustics,
vol. 8, pp. 28–36, 2017.
[5] A. Hariri, J. Lemaster, J. Wang, A. Jeevarathinam, D. Chao, and
J. Jokerst, “The characterization of an economic and portable LED-
based photoacoustic imaging system to facilitate molecular imaging,”
Photoacoustics, vol. 9, pp. 10–20, 2018.
[6] P. Upputuri and M. Pramanik, “Fast photoacoustic imaging systems
using pulsed laser diodes: a review,” Biomed. Eng. Lett., vol. 2018,
pp. 167–181, 2018.
[7] R. Ma, A. Taruttis, V. Ntziachristos, and D. Razansky, “Multispectral
optoacoustic tomography (msot) scanner for whole-body small animal
imaging,” Opt. Express, vol. 17, pp. 21 414–1–13, 2009.
[8] S. Agrawal, C. Fadden, A. Dangi, X. Yang, H. Albahrani, N. Frings,
S. Zadi, and S. Kothapalli, “Light-emitting-diode-based multispectral
photoacoustic computed tomography system,” Sensors, vol. 19, pp.
4861–1–13, 2019.
[9] H. Zhong, T. Duan, H. Lan, M. Zhou, and F. Fao, “Review of low-
cost photoacoustic sensing and imaging based on laser diode and
light-emitting diode,” Sensors, vol. 18, pp. 1–24, 2018.
[10] T. Allen and P. Beard, “High power visible light emitting diodes
as pulsed excitation sources for biomedical photoacoustics,” Biomed.
Opt. Express, vol. 7, pp. 1261–1270, 2016.
[11] M. Singh, LED-Based Photoacoustic Imaging. Springer, 2020.
[12] “Proyecto computadora industrial abierta argentina,” Argentina.
[Online]. Available: http://www.proyecto-ciaa.com.ar/
[13] M. G. Gonzalez, B. Abadi, L. C. Brazzano, and P. Sorichetti, “Linear
piezoelectric sensor for optoacoustic tomography: electroacoustic
characterization,” in Proc. IEEE Argencon, 2018, pp. 1–4.
[14] M. G. Gonzalez, P. Sorichetti, and G. Santiago, “Reducing the
capacitance of piezoelectric film sensors,” Rev. Sci. Instrum., vol. 87,
pp. 045 003–1–5, 2016.
[15] R. Insabella, M. Gonzalez, E. Acosta, and G. Santiago, “Dielectric an-
tenna effects in integrating line piezoelectric sensors for optoacoustic
imaging,” Meas. Sci. and Tech., vol. 31, p. 125103, 2020.
[16] R. Insabella, M. Gonzalez, L. Riobo, K. Hass, and F. Veiras,
“Software-defined optoacoustic tomography,” Appl. Opt., vol. 59, pp.
706–711, 2020.
[17] “LED-CBT-120-G-C11 datasheet,” Luminus. [Online]. Available:
https://download.luminus.com/datasheets/Luminus
[18] “MOSFET-IRF8707 datasheet,” International Rectifier. [Online].
Available: https://www.infineon.com/dgdl/irf8707pbf.pdf?fileId=
5546d462533600a40153560d57f81d6b
[19] “MOSFET driver TC4427 datasheet,” Mi-
crochip Technology. [Online]. Available:
https://www.microchip.com/wwwproducts/en/TC4427
[20] M. G. Gonzalez, L. Riobo, L. C. Brazzano, F. Veiras, P. Sorichetti, and
G. Santiago, “Generation of sub-microsecond quasi-unipolar pressure
pulses,” Ultrasonics, vol. 98, pp. 15–19, 2019.
[21] M. G. Gonzalez, E. Acosta, and G. Santiago, “Simple method to
determine the resolution and sensitivity of systems for optoacoustic
tomography,” Revista Elektron, vol. 2, pp. 63–66, 2018.
[22] P. Ninni, F. Martelli, and G. Zaccanti, “The use of india ink in tissue-
simulating phantoms,” Opt. Express, vol. 18, no. 26, pp. 26 854–1–12,
2010.
[23] “Laser Energy Sensor datasheet,” Coherent. [On-
line]. Available: https://www.coherent.com/measurement-
control/measurement/multi purpose-energymax-sensors
[24] “Optical receiver 818-BB-21 datasheet,” Newport. [Online].
Available: https://www.newport.com/p/818-BB-21A
[25] “High Speed Current Amplifier datasheet,” FEMTO. [Online]. Avail-
able: https://www.femto.de/images/pdf-dokumente/de-hca-100m-50k-
c.pdf
[26] K. Mackenzie, “Nine-term equation for sound speed in the oceans,”
J. Acousti. Soc. Am., vol. 70, pp. 807–812, 1981.
[27] P. Binh, V. Trong, P. Renucci, and X. Marie, “A simple sub-
nanosecond ultraviolet light pulse generator with high repetition rate
and peak power,” Rev. Sci. Instrum., vol. 84, pp. 083 102–1–7, 2013.
[28] “LTspice,” Analog Devices. [Online]. Avail-
able: https://www.analog.com/en/design-center/design-tools-and-
calculators/ltspice-simulator.html
[29] T. Kishi, H. Tanaka, Y. Umeda, and O. Takyu, “A high-speed
LED driver that sweeps out the remaining carriers for visible light
communications,” J. Lightw. Technol., vol. 32, pp. 239–248, 2014.
[30] H. Halbritter, C. Jaeger, R. Weber, M. Schwind, and F. Moellmer,
“High-speed LED driver for ns-pulse switching of high-current leds,”
IEEE Photonics Tech. Lett., vol. 26, pp. 1871–1873, 2014.
[31] H. Zhang, K. Kondo, M. Yamakawa, and T. Shiina, “Simultane-
ous multispectral coded excitation using periodic and unipolar m-
sequences for photoacoustic imaging,” in Proc. SPIE, vol. 8581, no.
85812Y, 2013.
[32] “Cyberdyne Acoustic X,” Japan. [Online]. Avail-
able: https://www.cyberdyne.jp/english/products/pdf/AcousticX-flyer-
A4Size-English.pdf
Revista elektron, Vol. 4, No. 2, pp. 64-68 (2020)
http://elektron.fi.uba.ar