Isotropic-anisotropic interfaces: an algorithm to characterize reflection and refraction

Authors

  • Germán Caro UBA
  • Eduardo Omar Acosta Universidad de Buenos Aires
  • Francisco Veiras CONICET
  • Lilianan Perez GLOMAE-FIUBA and CONICET

DOI:

https://doi.org/10.37537/rev.elektron.3.2.77.2019

Keywords:

anisotropy, transmission, optoelectronic devices

Abstract

The detailed study of the response of anisotropic linear materials to electromagnetic fields has as one of its aims the design of new devices of interest in Optics, Optoelectronics and Electronics. In this paper we present a simple computer tool that is able to determine the characteristics of the propagation of plane waves through an isotropic-anisotropic uniaxial interface with arbitrary direction of the optical axis with respect to the direction of incidence. The algorithms were checked with the analytical results in cases where the incidence plane coincides with each of the principal planes of the crystal.

Downloads

Download data is not yet available.

Author Biography

  • Eduardo Omar Acosta, Universidad de Buenos Aires

    Licenciado en Ciencias Físicas, Doctor en Ciencias de la Ingeniería (UBA)

    Profesor Adjunto del Departamento de Física 

References

J. Stamnes and V. Dhayalan, “Transmission of a two-dimensional gaussian beam into a uniaxial crystal .” Journal of the Optical Society of America A Vol. 18, Issue 7, pp. 1662-1669, 2001.

R. Thompson, “Optical waves in layered media,” Journal of Modern Optics, 37:1, 147-148, 2007.

K. Zhang and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics. Springer, 2008.

J. Canto, S. Matos, C. Paiva, and A. Barbosa, “Antennas and propagation society international symposium,” 7AP-S 2008 IEEE (2008) 1-4., 2008.

A. Eroglu, Wave Propagation and Radiation in Gyrotropic and Anisotropic Media. Frontieres, Gif-sur-Yvette, 1992.

J. M. D. neiro, C. Alberdi, B. Hernández, and C. Sáenz, “Uniaxial absorbing media: conditions for refraction in the direction of the optical axis.” Journal of the Optical Society of America A Vol. 30, Issue 3, pp. 385-391, 2013.

M. C. Simon and L. I. Perez, “Total reflection in uniaxial crystals,” Optik, 1989.

J. Bliokh, Yu. P.; Felsteiner, “Total negative refraction in crystals for ballistic electrons and light,” arXiv:physics/0311066, 2003.

Z. Liu, Z. Lin, and S. T. Chui, “Negative refraction and omnidirectional total transmission at a planar interface associated with a uniaxial medium,” Phys. Rev. B 69, 115402, 2004.

Y. Zhang, B. Fluegel, and A. Mascarenhas, “Total negative refraction in real crystals for ballistic electrons and light,” Phys. Rev. Lett. 91, 157404, 2003.

Y. Zhang and B. Fluegel, “Total negative refraction in real crystals for ballistic electrons and light,” Phys. Rev. Lett., 2004.

Z. Liu, Z. Lin, and S. Chui, “Negative refraction and omnidirectional total transmission at a planar interface associated with a uniaxial medium,” Phys. Rev. B, 2004.

L. Perez, M. T. Garea, and R. Echarri, “Isotropic-uniaxial crystal interfaces: Negative refraction and backward wave phenomena,” Optics Communications, vol. 254, no. 1-3, pp. 10–18, 2005.

Y. Bliokh and J. Felsteiner, “Total negative refraction in crystals for ballistic electrons and light,” arXiv: physics/0311066, 2003.

M. Simon and L. Perez, “Evanescent waves in total reflection in uniaxial crystals,” Optik, 1990.

M. C. Simon and R. M. Echarri, “Inhibited reflection in uniaxial crystals,” Optics Letters Vol. 14, Issue 5, pp. 257-259 (1989), 1989.

M. C. Simon and R. Echarri, “Internal reflection in uniaxial crystals i. geometrical description,” J. Mod. Opt., 1990.

P. Belov, “Proceedings of the ursi/ieee xxvii convention on radio science,” Espoo, Finland, 2002.

K. V. Gottschalk, M. Garea, M. C. Simon, and L. I. Perez, “Brewster ́s angle and the effective electric polarization,” Proceeding SPIE, vol. 4419, pp. 454-457, 2001.

J. Lekner, “Brewster angles in reflection by uniaxial crystals,” Journal of the Optical Society of America A Vol. 10, Issue 9, pp. 2059-2064, 1993.

M. C. Simon and R. M. Echarri, “Inhibited reflection in uniaxial crystals,,” Opt. Lett., vol. 14, pp. 257-259, 1989.

J. C. Maxwell, “On physical lines of force,” Philosofical Magazine, 1861.

——, “A dynamical theory of the electromagnetic field,” Philosophical Transactions of the Royal Society of London, 1865.

J. D. Jackson, Classical electrodynamics. 2.ed. Wiley, 1975.

M. B. . E. Wolf, Principle of Optic: Electromagnetic Theory of Propagation, Interfence and Diffraction of Light, 7ma ed. Cambridge University Press, 1999.

M. C. Simon, “Ray tracing formulas for monoaxial optical componentes,” Applied Optics, Vol. 22, N. 2, 1982, 1983.

M. C. Simon and R. M. Echarri, “Ray tracing formulas for monoaxial optical componentes: vectorial formulation,” Applied Optics, Vol. 25 Pag. 1935-1939, 1986.

L. I. Perez and C. E. Vanney, “Non-absorbing isotropica uniaxial interfaces: refraction in ordinary and extraordinary total reflection,” Journal of Modern Optics, vol. 52, no. 14, pp. 1981–2000, 2005.

M. C. Simon and K. V. Gottschalk, “Waves and rays in uniaxial birefringent crystals,” Optik, Vol. 118, Issue 10, 2007.

Published

2019-12-15

Issue

Section

Engineering Education

How to Cite

[1]
G. Caro, E. O. Acosta, F. Veiras, and L. Perez, “Isotropic-anisotropic interfaces: an algorithm to characterize reflection and refraction”, Elektron, vol. 3, no. 2, pp. 103–111, Dec. 2019, doi: 10.37537/rev.elektron.3.2.77.2019.