
Fig. 7. Coeficientes de reflexi
´
on y transmisi
´
on para una interfaz vidrio
denso-calcita con n = 1.7, δ = 90
◦
con θ = 0
◦
en funci
´
on del
´
angulo de
incidencia. Se observa el fen
´
omeno de reflexi
´
on total
is
´
otropo-anis
´
otropo uniaxial para distintas caracter
´
ısticas del
material is
´
otropo y direcci
´
on de incidencia del haz respecto
a la del eje
´
optico. Esta descripci
´
on est
´
a fundamentada
en la resoluci
´
on anal
´
ıtica de las Ecuaciones de Maxwell
y obteniendo expresiones expl
´
ıcitas de los coeficientes de
reflexi
´
on y transmisi
´
on para los casos en que el plano de
incidencia coincide con uno de los planos principales del
medio uniaxial.
Se comprob
´
o que los valores obtenidos con el c
´
odigo de-
sarrollado reproducen con precisi
´
on los resultados anal
´
ıticos,
observ
´
andose el fen
´
omeno de refracci
´
on negativa, onda
en retroceso y la coincidencia en la determinaci
´
on de los
´
angulos de reflexi
´
on total.
Estos resultados sirven, adem
´
as, como primeras pruebas
de un software que se est
´
a desarrollando en nuestro grupo de
investigaci
´
on para determinar las caracter
´
ısticas de las ondas
incidentes reflejadas y transmitidas a trav
´
es de un bloque de
material uniaxial.
Se espera que el desarrollo completo de este software
facilite la descripci
´
on del comportamiento de ondas elec-
tromagn
´
eticas en medios uniaxiales brindando no solo las
direcciones de propagaci
´
on sino tambi
´
en todas las carac-
ter
´
ısticas de los campos asociados a
´
un cuando se trate de
haces limitados en el espacio y/o en el tiempo.
AGRADECIMIENTOS
Este trabajo fue realizado con el apoyo parcial de los
siguientes subsidios: 20020160100042BA- UBACYT 2017-
2020, 20020170200232BA -UBACYT 2018-2019, PICT
2016 N
◦
2204. El Sr. Germ
´
an Caro (estudiante de la
licenciatura en Ciencias F
´
ısicas de la FCEN-UBA) realiz
´
o
este trabajo con el aporte de una Beca Est
´
ımulo 2017-2018
(UBA).
REFERENCIAS
[1] J. Stamnes and V. Dhayalan, “Transmission of a two-dimensional
gaussian beam into a uniaxial crystal .” Journal of the Optical Society
of America A Vol. 18, Issue 7, pp. 1662-1669, 2001.
[2] R. Thompson, “Optical waves in layered media,” Journal of Modern
Optics, 37:1, 147-148, 2007.
[3] K. Zhang and D. Li, Electromagnetic Theory for Microwaves and
Optoelectronics. Springer, 2008.
[4] J. Canto, S. Matos, C. Paiva, and A. Barbosa, “Antennas and prop-
agation society international symposium,” 7AP-S 2008 IEEE (2008)
1-4., 2008.
[5] A. Eroglu, Wave Propagation and Radiation in Gyrotropic and
Anisotropic Media. Frontieres, Gif-sur-Yvette, 1992.
[6] J. M. D. neiro, C. Alberdi, B. Hern
´
andez, and C. S
´
aenz, “Uniaxial
absorbing media: conditions for refraction in the direction of the
optical axis.” Journal of the Optical Society of America A Vol. 30,
Issue 3, pp. 385-391, 2013.
[7] M. C. Simon and L. I. Perez, “Total reflection in uniaxial crystals,”
Optik, 1989.
[8] J. Bliokh, Yu. P.; Felsteiner, “Total negative refraction in crystals for
ballistic electrons and light,” arXiv:physics/0311066, 2003.
[9] Z. Liu, Z. Lin, and S. T. Chui, “Negative refraction and omnidirec-
tional total transmission at a planar interface associated with a uniaxial
medium,” Phys. Rev. B 69, 115402, 2004.
[10] Y. Zhang, B. Fluegel, and A. Mascarenhas, “Total negative refraction
in real crystals for ballistic electrons and light,” Phys. Rev. Lett. 91,
157404, 2003.
[11] Y. Zhang and B. Fluegel, “Total negative refraction in real crystals
for ballistic electrons and light,” Phys. Rev. Lett., 2004.
[12] Z. Liu, Z. Lin, and S. Chui, “Negative refraction and omnidirectional
total transmission at a planar interface associated with a uniaxial
medium,” Phys. Rev. B, 2004.
[13] L. Perez, M. T. Garea, and R. Echarri, “Isotropic-uniaxial crystal in-
terfaces: Negative refraction and backward wave phenomena,” Optics
Communications, vol. 254, no. 1-3, pp. 10–18, 2005.
[14] Y. Bliokh and J. Felsteiner, “Total negative refraction in crystals for
ballistic electrons and light,” arXiv: physics/0311066, 2003.
[15] M. Simon and L. Perez, “Evanescent waves in total reflection in
uniaxial crystals,” Optik, 1990.
[16] M. C. Simon and R. M. Echarri, “Inhibited reflection in uniaxial
crystals,” Optics Letters Vol. 14, Issue 5, pp. 257-259 (1989), 1989.
[17] M. C. Simon and R. Echarri, “Internal reflection in uniaxial crystals
i. geometrical description,” J. Mod. Opt., 1990.
[18] P. Belov, “Proceedings of the ursi/ieee xxvii convention on radio
science,” Espoo, Finland, 2002.
[19] K. V. Gottschalk, M. Garea, M. C. Simon, and L. I. Perez, “Brew-
ster
ˆ
A´s angle and the effective electric polarization,” Proceeding
SPIE, vol. 4419, pp. 454-457, 2001.
[20] J. Lekner, “Brewster angles in reflection by uniaxial crystals,” Journal
of the Optical Society of America A Vol. 10, Issue 9, pp. 2059-2064,
1993.
[21] M. C. Simon and R. M. Echarri, “Inhibited reflection in uniaxial
crystals,,” Opt. Lett., vol. 14, pp. 257-259, 1989.
[22] J. C. Maxwell, “On physical lines of force,” Philosofical Magazine,
1861.
[23] ——, “A dynamical theory of the electromagnetic field,” Philosoph-
ical Transactions of the Royal Society of London, 1865.
[24] J. D. Jackson, Classical electrodynamics. 2.ed. Wiley, 1975.
[25] M. B. . E. Wolf, Principle of Optic: Electromagnetic Theory of
Propagation, Interfence and Diffraction of Light, 7ma ed. Cambridge
University Press, 1999.
[26] M. C. Simon, “Ray tracing formulas for monoaxial optical compo-
nentes,” Applied Optics, Vol. 22, N. 2, 1982, 1983.
[27] M. C. Simon and R. M. Echarri, “Ray tracing formulas for monoaxial
optical componentes: vectorial formulation,” Applied Optics, Vol. 25
Pag. 1935-1939, 1986.
[28] L. I. Perez and C. E. Vanney, “Non-absorbing isotropica uniaxial
interfaces: refraction in ordinary and extraordinary total reflection,”
Journal of Modern Optics, vol. 52, no. 14, pp. 1981–2000, 2005.
[29] M. C. Simon and K. V. Gottschalk, “Waves and rays in uniaxial
birefringent crystals,” Optik, Vol. 118, Issue 10, 2007.
Revista elektron, Vol. 3, No. 2, pp. 103-111 (2019)
http://elektron.fi.uba.ar