Distortions of Gaussian pulses transmitted through a transparent isotropic layer

Authors

  • Eduardo Omar Acosta GLOMAE-FIUBA
  • María Teresa Garea GLOMAE-FIUBA
  • Natalia Álvarez GLOMAE-FIUBA
  • Liliana Perez GLOMAE-FIUBA

DOI:

https://doi.org/10.37537/rev.elektron.2.2.58.2018

Keywords:

Gaussian pulses, Geometric Optics, Phase shift

Abstract

Lasers can operate in two regimes: continuous-wave mode or pulsed mode. In the simplest case, the former mode corresponds to monochromatic beams with Gaussian distribution of amplitudes (beam limited in space); whereas the latter mode corresponds to polychromatic beams with Gaussian distribution of frequencies (pulse limited in time).
When the pulsed beams are reflected and refracted in different types of interfaces, they undergo peculiar distortions that bear some parallelism with those found for beams limited in space.  These effects, as shown in a previous work, correspond to time delay (first order) and change of pulse width (second order).
The distortions are clearly limited by the principle of causality and their interpretation, while not straightforward, emerges clearly when the associated fields are expressed in magnitude and phase. Since the analytical expressions are not simple even for the case where the pulse is transmitted through a single layer of linear, homogeneous, isotropic and transparent material, it makes it difficult to solve the inverse problem.
In this work, we present an alternative analytical development that makes it possible to explicitly determine these distortion effects when a pulse impinges normally on a transparent isotropic layer immersed in a medium of analogous characteristics.

Downloads

Download data is not yet available.

References

J. Picht, “About the vibration process that corresponds to any (astigmatic) beam,” Annalen der Physik, vol. 382, no. 16, pp. 785–882, 1925.

K. Yasumoto and Y. Oishi, “A new evaluation of the goos–hanchen shift and associated time delay,” Journal of Applied Physics, vol. 54, no. 5, pp. 2170–2176, 1983.

F. Noether, “About the distribution of the energy flow in total reflection,” Annalen der Physik, vol. 403, no. 2, pp. 141–146, 1931.

K. Artmann, “Calculation of the lateral displacement of the totally reflected beam,” Annalen der Physik, vol. 437, no. 1-2, pp. 87–102, 1948.

T. Tamir, “Nonspecular phenomena in beam fields reflected by multilayered media,” J. Opt. Soc. Am. A, vol. 3, no. 4, pp. 558–565, Apr 1986.

W. Nasalski, “Three-dimensional beam reflection at dielectric interfaces,” Optics Communications, vol. 197, no. 4, pp. 217 – 233, 2001.

L. I. Perez, R. M. Echarri, M. T. Garea, and G. D. Santiago, “Determination of nongeometric effects: equivalence between artmann’s and tamir’s generalized methods,” J. Opt. Soc. Am. A, vol. 28, no. 3, pp. 356–362, Mar 2011.

M. A. Porras, “Moment-method evaluation of the angular and lateral shifts of reflected light beams,” Optics Communications, vol. 131, no. 1, pp. 13 – 20, 1996.

J. Alda and J. M. Rico-Garcia, “Angular shifts of paraxial beams by refraction in a plane dielectric/dielectric interface,” Optics Communications, vol. 213, no. 4, pp. 229 – 239, 2002.

J. Diels, W. Rudolph, P. Liao, and P. Kelley, Ultrashort Laser Pulse Phenomena, ser. Optics and photonics. Elsevier Science, 2006.

S. A. Planas, N. L. P. Mansur, C. H. B. Cruz, and H. L. Fragnito, “Spectral narrowing in the propagation of chirped pulses in single-mode fibers,” Opt. Lett., vol. 18, no. 9, pp. 699–701, May 1993.

M. Rosete-Aguilar, F. Estrada-Silva, N. Bruce, C. Román-Moreno, and R. Ortega-Martı́nez, “Calculation of temporal spreading of ultrashort pulses propagating through optical glasses,” Revista mexicana de fı́sica, vol. 54, pp. 141 – 148, 04 2008.

P. Krehlik, “Characterization of semiconductor laser frequency chirp based on signal distortion in dispersive optical fiber,” Opto-Electronics Review, vol. 14, no. 2, pp. 119–124, Jun 2006.

“Special issue on laser beam quality.” Opt. Quantum Electron, vol. 24, no. 9, Sep. 1992.

M. A. Porras, J. Alda, and E. Bernabeu, “Complex beam parameter and abcd law for non-gaussian and nonspherical light beams,” Appl. Opt., vol. 31, no. 30, pp. 6389–6402, Oct 1992.

P. A. Bélanger, “Beam propagation and the abcd ray matrices,” Opt. Lett., vol. 16, no. 4, pp. 196–198, Feb 1991.

E. O. Acosta, N. C. Álvarez, M. T. Garea, L. Perez, and P. Sorichetti, “Deformaciones de segundo orden en la transmisión de haces y pulsos gaussianos a través de una capa isótropa,” Revista elektron, vol. 2, no. 1, 2018.

Downloads

Published

2018-12-03

Issue

Section

Optoelectronics and Microelectronics

How to Cite

[1]
E. O. Acosta, M. T. Garea, N. Álvarez, and L. Perez, “Distortions of Gaussian pulses transmitted through a transparent isotropic layer”, Elektron, vol. 2, no. 2, pp. 67–70, Dec. 2018, doi: 10.37537/rev.elektron.2.2.58.2018.