
Fig. 3. Incident pulse (black), transmittes pulse using the method of
moments (red) and TGM (◦) calculated at x = 0
deformations; but instead the TGM provides explicit expres-
sions, simple to calculate. In all cases the major analytical
difficulty is to calculate explicit expressions of the real and
imaginary parts of the fields (or of their module and phases)
when dealing with complex interfaces (several interfaces).
Although Tamir’s approximation is likely to be better than
the second order and can easily been extended up to fourth
order, the latter is easily extended to higher orders since a
recurrence equation has been obtained
ACKNOWLEDGMENT
This work was supported by the Universidad de
Buenos Aires under Grants UBACyT (2014-2017)
20020130100346BA, (2017- 2020) 20020160100042BA
and (2017-2020) 20020160100052BA. Also, a postdoctoral
grant from CONICET for one of the authors is gratefully
acknowledged.
REFERENCES
[1] J. Picht, “About the vibration process that corresponds
to any (astigmatic) beam,” Annalen der Physik, vol.
382, no. 16, pp. 785–882, 1925. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19253821602
[2] K. Yasumoto and Y. Oishi, “A new evaluation of the goos–hanchen
shift and associated time delay,” Journal of Applied Physics,
vol. 54, no. 5, pp. 2170–2176, 1983. [Online]. Available:
https://doi.org/10.1063/1.332395
[3] F. Noether, “About the distribution of the energy
flow in total reflection,” Annalen der Physik, vol.
403, no. 2, pp. 141–146, 1931. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19314030203
[4] K. Artmann, “Calculation of the lateral displacement of
the totally reflected beam,” Annalen der Physik, vol.
437, no. 1-2, pp. 87–102, 1948. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19484370108
[5] T. Tamir, “Nonspecular phenomena in beam fields reflected
by multilayered media,” J. Opt. Soc. Am. A, vol. 3,
no. 4, pp. 558–565, Apr 1986. [Online]. Available:
http://josaa.osa.org/abstract.cfm?URI=josaa-3-4-558
[6] W. Nasalski, “Three-dimensional beam reflection at di-
electric interfaces,” Optics Communications, vol. 197,
no. 4, pp. 217 – 233, 2001. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0030401801014201
[7] L. I. Perez, R. M. Echarri, M. T. Garea, and G. D. Santiago,
“Determination of nongeometric effects: equivalence between
artmann’s and tamir’s generalized methods,” J. Opt. Soc. Am.
A, vol. 28, no. 3, pp. 356–362, Mar 2011. [Online]. Available:
http://josaa.osa.org/abstract.cfm?URI=josaa-28-3-356
[8] M. A. Porras, “Moment-method evaluation of the angular and
lateral shifts of reflected light beams,” Optics Communications,
vol. 131, no. 1, pp. 13 – 20, 1996. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0030401896003379
[9] J. Alda and J. M. Rico-Garcia, “Angular shifts of paraxial beams by
refraction in a plane dielectric/dielectric interface,” Optics Commu-
nications, vol. 213, no. 4, pp. 229 – 239, 2002. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0030401802021168
[10] J. Diels, W. Rudolph, P. Liao, and P. Kelley,
Ultrashort Laser Pulse Phenomena, ser. Optics and
photonics. Elsevier Science, 2006. [Online]. Available:
https://books.google.com.ar/books?id=rDQe81K0d3kC
[11] S. A. Planas, N. L. P. Mansur, C. H. B. Cruz, and H. L. Fragnito,
“Spectral narrowing in the propagation of chirped pulses in single-
mode fibers,” Opt. Lett., vol. 18, no. 9, pp. 699–701, May 1993.
[Online]. Available: http://ol.osa.org/abstract.cfm?URI=ol-18-9-699
[12] M. Rosete-Aguilar, F. Estrada-Silva, N. Bruce, C. Rom
´
an-Moreno,
and R. Ortega-Mart
´
ınez, “Calculation of temporal spreading of ultra-
short pulses propagating through optical glasses,” Revista mexicana
de f
´
ısica, vol. 54, pp. 141 – 148, 04 2008.
[13] P. Krehlik, “Characterization of semiconductor laser frequency
chirp based on signal distortion in dispersive optical fiber,” Opto-
Electronics Review, vol. 14, no. 2, pp. 119–124, Jun 2006. [Online].
Available: https://doi.org/10.2478/s11772-006-0015-z
[14] “Special issue on laser beam quality.” Opt. Quantum Electron, vol. 24,
no. 9, Sep. 1992.
[15] M. A. Porras, J. Alda, and E. Bernabeu, “Complex beam parameter
and abcd law for non-gaussian and nonspherical light beams,” Appl.
Opt., vol. 31, no. 30, pp. 6389–6402, Oct 1992. [Online]. Available:
http://ao.osa.org/abstract.cfm?URI=ao-31-30-6389
[16] P. A. B
´
elanger, “Beam propagation and the abcd ray matrices,” Opt.
Lett., vol. 16, no. 4, pp. 196–198, Feb 1991. [Online]. Available:
http://ol.osa.org/abstract.cfm?URI=ol-16-4-196
[17] E. O. Acosta, N. C.
´
Alvarez, M. T. Garea, L. Perez, and P. Sorichetti,
“Deformaciones de segundo orden en la transmisi
´
on de haces y pulsos
gaussianos a trav
´
es de una capa is
´
otropa,” Revista elektron, vol. 2,
no. 1, 2018.
Revista elektron, Vol. 2, No. 2, pp. 67-70 (2018)
http://elektron.fi.uba.ar