Trace gases detection by photoacoustic technique based on a lineal chirp excitation scheme

Authors

  • Carlos Carreño Romano FIUBA
  • German Perez Fogwill FIUBA
  • Guillermo D. Santiago GLOMAE-FIUBA
  • Martin G. Gonzalez GLOMAE-FIUBA

DOI:

https://doi.org/10.37537/rev.elektron.2.1.34.2018

Keywords:

Photoacoustic spectroscopy, trace gases, chirp

Abstract

We present a new photoacoustic gas-trace measurement setup, based on a chirped optical chopper. This method combines features of the resonant and pulsed techniques. To show the advantages of this setup, we carried out a comparison with the resonant method in samples of NO2 contained in a one-dimensional acoustic resonator. The results show the chirped technique allows carrying out short-term acquisitions with good signal-to-noise ratio.

Downloads

Download data is not yet available.

References

A. Peuriot, G. Santiago, and V. Slezak, Modelado, métodos de adquisición y procesamiento en la espectroscopía fotoacústica en gases, ser. Laseres: Desarrollos y Aplicaciones. Tomo 2., L. Azcarate, P. Diodati, E. Quel, and V. Slezak, Eds. Buenos Aires, Argentina: UNSAMedita, 2007.

M. Sigrist, Air monitoring by laser photoacoustic spectroscopy, ser. Air Monitoring by Spectroscopic Techniques. New York, USA: John Wiley, 1994.

A. Kosterev and F. Tittel, “Ammonia detection by use of quartzenhanced photoacoustic spectroscopy with a near-ir telecommunication diode laser,” Appl. Opt., vol. 43, pp. 6213–6217, 2004.

S. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis. New York, USA: John Wiley, 1996.

A. Miklos, P. Hess, and Z. Bozoki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum., vol. 72, pp. 1937–1955, 2001.

M. G. Gonzalez, “Análisis y desarrollo de nuevas técnicas de detección optoacústicas,” Ph.D. dissertation, Univ. de Buenos Aires, Buenos Aires, Argentina, Mar. 2008.

A. Schmohl, A. Miklos, and P. Hess, “Effects of adsorption-desorption processes in the response time and accuracy of photoacoustic detection of ammonia,” Appl. Opt., vol. 40, pp. 2571–2578, 2001.

J. Henningsen and N. Melander, “Sensitive measurement of adsorption dynamics with nonresonant gas phase photoacoustics,” Appl. Opt., vol. 36, pp. 7037–7045, 1997.

A. Peuriot, G. Santiago, V. Slezak, and M. G. Gonzalez, “Study of a spherical resonator applied to photoacoustic spectroscopy,” Anales AFA, vol. 19, pp. 59–62, 2007.

P. Repond and M. Sigrist, “Photoacoustic spectroscopy on trace gases with continuously tunable co2 laser,” Appl. Opt., vol. 35, pp. 4065–4085, 1996.

F. Bijnen, J. Reuss, and F.Harren, “Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection,” Rev. Sci. Instrum., vol. 67, pp. 2914–2923, 1996.

M. G. Gonzalez, G. Santiago, V. Slezak, and A. Peuriot, “Simple synchronic detection at audio frequencies through a pc sound card,” Rev. Sci. Instrum., vol. 78, p. 055108, 2007.

R. Bernhardt, G. Santiago, V. Slezak, A. Peuriot, and M. G. Gonzalez, “Differential, led-excited, resonant no 2 photoacoustic system,” Sens. Actuator B-Chem., vol. 150, pp. 513–516, 2010.

Published

2018-05-17

Issue

Section

Optoelectronics and Microelectronics

How to Cite

[1]
C. Carreño Romano, G. Perez Fogwill, G. D. Santiago, and M. G. Gonzalez, “Trace gases detection by photoacoustic technique based on a lineal chirp excitation scheme”, Elektron, vol. 2, no. 1, pp. 7–11, May 2018, doi: 10.37537/rev.elektron.2.1.34.2018.