Characterization of Liquids by Photoacoustic Technique: Study of Broadband Piezoelectric Sensors

Authors

  • Leslie Cusato Universidad de Buenos Aires
  • Mariel Estevez Universidad de Buenos Aires
  • Guillermo Daniel Santiago Universidad de Buenos Aires
  • Martín Germán González GLOMAE, FIUBA

DOI:

https://doi.org/10.37537/rev.elektron.1.1.14.2017

Keywords:

Photoacoustic, Piezoelectric sensors, Quantum Efficiency

Abstract

In this paper we present the study of three sensors, based on piezoelectric polymer thin films, for photoacoustic systems used in the characterization of liquids. Its performance was compared by carrying out measurements on well-known liquids. From the measured data, the sensitivity, noise level and quantification limit of each of the sensors were determined. The device with the best characteristics was used in the determination of the quantum efficiency of two dyes: Rhodamine 6G and Rhodamine B. The measured values agree very well with those reported by other authors.

Downloads

Download data is not yet available.

References

M. G. González, "Análisis y Desarrollo de Nuevas Técnicas de Detección Optoacústicas", Tesis de Doctorado, Universidad de Buenos Aires, 2008.

C. Haisch, "Photoacoustic spectroscopy for analytical measurements", Meas. Sci. Technol. vol. 23, p. 012001, 2012

A. Rosencwaig, "Photoacoustics and photacoustic sprectroscopy", John Wiley and Sons Inc., Nueva York, 1981.

T. Schmid, U. Panne, R. Niessner, C. Haisch, "Optical absorbance measurements of opaque liquids by pulsed láser photoacoustic spectroscopy", Anal. Chem. vol. 81, pp. 2403-2409, 2009.

H.G. Arrigo, "Optimización de sistemas de detección de señales ópticas para alta potencia y alta velocidad", Tesis de grado de Ingeniería Electrónica, Facultad de Ingeniería de la Universidad de Buenos Aires, 2011.

M. González, A. Peuriot, V. Slezak, G. Santiago, "Recovery of noisy pyroelectric-detector signals through neural-network processing", Rev. Sci. Intrum. vol. 76, p. 053104, 2005

M. G. González, P. A. Sorichetti and G. Santiago, "Modeling thin-film piezoelectric polymer ultrasonic sensors", Rev. Sci. Instrum. vol 85, no. 11, 2014, doi: 10.1063/1.4901966.

M. González, P. Sorichetti, G. Santiago, "Caracterización de sensores planos de polímero piezoeléctrico para tomografía optoacústica", Argencon 2014 IEEE Conference Publications, pp. 281-285, 2014

J.E.Selwyn, J.I.Steinfeld, "Aggregation equilibria of xanthene dyes", J.Phys.Chem. vol. 76, pp. 762-774, 1972

K.Igarashi, M.Maeda, T.Takao, Y.Oki, H. Kusama, "Dominant Factors of Preventing Rhodamine 6G from Dimer Formation in Aqueous Solutions", Bull Chem Soc Japan vol. 72, pp. 1197-1202, 1999

J.N. Demas, G.A.Crosby, "The Measurement of Photoluminescence Quantum Yields", Phys. Chem. vol. 75, pp. 991-1024, 1971

B. Soffer, B. McFarland, "Continously tunable, narrow-band organic dye lasers", Appl. Phys.Lett. vol. 10, pp. 266-267, 1967.

B.Valeur, "Molecular Fluorescence Principles and Applications", Wiley-VCH Verlag GmbH, 1ra edición, Weinheim, 2001.

G. Saini, A. Sharma, S. Kaur, K. Bindra, V. Sathe, S. Tripathi, C. Mhahajan, "Rhodamine 6G interaction with solvents studied by vibrational spectroscopy and density functional theory", J. Mol. Struct. vol. 931, pp. 10-19, 2009.

L. Porrès, A. Holland, L. Palsson, A. Monkman, C. Kemp, A. Beeby, "Absolute measurements of photoluminiscence quantum yields of solutions using an integrating sphere", Journal of Fluorescence vol. 16, pp. 267-273, 2006.

R. Kubin, A Fletcher, "Fluorescence quantum yields of some rhodamine dyes", J. Luminescence, vol. 27, pp. 455-462, 1982.

K. Casey, E. Quitevis, "Effect of solvent polarity on nonradiative processes in xanthene dyes: Rhodamine B in normal alcohols", J. Phys. Chem. vol. 92, pp. 6590-6594, 1988.

Published

2017-07-10

Issue

Section

Optoelectronics and Microelectronics

How to Cite

[1]
L. Cusato, M. Estevez, G. D. Santiago, and M. G. González, “Characterization of Liquids by Photoacoustic Technique: Study of Broadband Piezoelectric Sensors”, Elektron, vol. 1, no. 1, pp. 8–15, Jul. 2017, doi: 10.37537/rev.elektron.1.1.14.2017.