Increased Accuracy in Indoor Location based on Neural Networks

Authors

  • Agustín Gerez Universidad Nacional del Centro de la Provincia de Buenos Aires
  • Oscar Enrique Goñi LabSET - INTIA - Universidad Nacional del Centro de la Provincia de Buenos Aires
  • Lucas Leiva LabSET - INTIA - Universidad Nacional del Centro de la Provincia de Buenos Aires

DOI:

https://doi.org/10.37537/rev.elektron.4.2.114.2020

Keywords:

localization, triangulation, distance, ANN

Abstract

The use of WiFi is widely used by a large number of devices, including those that make up the Internet of Things (IoT) and Artificial Intelligence (AI) systems. The location problem has been under investigation for a long time. In some cases, the radio signals used to transmit information are also used to make position estimates. However, its use is affected by the constant fluctuation of the signal. It is possible that when estimating the position of a component, it is influenced by obstacles, multipath and signal reflection. Its use improves when spatial localization is carried out, where assets can be traced within an indoor environment. In this work, the relationship of the distance estimation algorithms using RSSI and triangulation is analyzed, and a solution based on Neural Networks is proposed that combines the results of three distance estimation algorithms in order to increase precision.

Downloads

Download data is not yet available.

References

C. Lago Gonzales, J. C. Sepulveda Peña, R. Barroso Abrea, F. Oscar Fernandez Peña, F. Macia Paz, J. Lorenzo, “Sistema para la generación automática de mapas de rendimiento. Aplicación en la agricultura de precisión”. Vol 29, n°1, pp 59-69. IDESIA, Chile Enero- Abril 2011.

F. Jimenez Moral,. “ShoppingBeacon: Sistema asistencial en superficies comerciales basado en posicionamiento en interiores”. Trabajo fin de grado. Universidad de Castilla-La mancha. Escuela Superior de Informática. Septiembre, 2015.

F. Dwiyasa, M.-H. Lim, "A survey of problems and approaches in ecuacfigurawireless-based indoor positioning", Proc. Int. Conf. Indoor Positioning Indoor Navigat., pp. 1-7, Oct. 2016.

L. Diaz, A. Tabernilla, F. Perez Costoya, “Sistema de Localización de Interiores”. Trabajo fin de carrera. Universidad politécnica de madrid. Facultad de informática.

Eva M. Garcia Polo. “Técnicas de Localización en Redes Inalámbricas de Sensores”. Instituto de informática de Albanecete. Departamento de Sistemas Informáticos. Universidad de Castilla-La Mancha.

Shahra, E. Q., Sheltami, T. R., & Shakshuki, E. M. (2020). A comparative study of range-free and range-based localization protocols for wireless sensor network: Using cooja simulator. In Sensor Technology: Concepts, Methodologies, Tools, and Applications ​ (pp. 1522-1537). IGI Global.

Xiao, J., Liu, Z., Yang, Y., Liu, D., & Han, X. (2011, June). Comparison and analysis of indoor wireless positioning techniques. In 2011 International conference on computer science and service system (CSSS) (pp. 293-296). IEEE.

Mekelleche, F., & Haffaf, H. Classification and comparison of ange-based localization techniques in wireless sensor networks. Journal of Communications, 12(4), 221-227, 2017.

A. Tahat, G. Kaddoum, S. Yousefi, S. Valaee, and F. Gagnon, "A look at the recent wireless positioning techniques with a focus on algorithms for moving receivers," IEEE Access, vol. 4, pp. 6652–6680, 2017.

N. H. Nguyen and K. Dogançay, "Optimal geometry analysis for multistatic TOA localization," IEEE Trans. Signal Process., vol. 64, no. 16, pp. 4180–4193, Aug. 2016.

G. Wang, A. M.-C. So, and Y. Li, "Robust convex approximation methods for TDOA-based localization under NLOS conditions," IEEE Trans. Signal Process., vol. 64, no. 13, pp. 3281–3296, Jul. 2016.

L. Liu and H. Liu, "Joint estimation of DOA and TDOA of multiple reflections in mobile communications," IEEE Access, vol. 4, pp. 3815–3823, 2016.

Q. Luo, Y. Peng, J. Li, and X. Peng, "RSSI-based localization through uncertain data mapping for wireless sensor networks," IEEE Sensors J., vol. 16, no. 9, pp. 3155–3162, May 2016.

Xiuyan Zhu, Yuan Feng. “RSSI-based Algorithm for Indoor Localization”. College of Information Science and Engineering, Ocean University of China, Qingdao, China.

Survankar Barai, Debajyoti Biswal y Buddhadeb Sau, “Estimate Distance Measurement using NodeMCU ESP8266 based on RSSI technique”. Departament on Mathematics, jadavpur University, Kolkata - 700032, India, pp 170-171.

I. Nasca, T. Cojocariu, Indoor Positioning System Using Wi-Fi Signal. Today Software Magazine 26. November 2015.

H. Chen, Y. Zhang, W. Li, X. Tao, and P. Zhang, “ConFi: Convolutional neural networks based indoor Wi-Fi localization using channel state information,” IEEE Access, vol. 5, pp. 18 066–18 074, Sep. 2017.

S.-H. Fang and T.-N. Lin, “Indoor location system based on discriminant-adaptive neural network in IEEE 802.11 environments,” IEEE Transactions on Neural Networks, pp. 1973–1978, Nov 2008.

X. Lu, H. Zou, H. Zhou, L. Xie, and G.-B. Huang, “Robust extreme learning machine with its application to indoor positioning,” IEEE Transaction on Cybernetics, vol. 46, no. 1, pp. 194–205, Jan. 2016.

H. Dai, W. hao Ying, and J. Xu, “Multi-layer neural network for received signal strength-based indoor localization,” IET Communications, vol. 10, pp. 717–723, Jan. 2016.

Published

2020-12-14

Issue

Section

Signal Processing

How to Cite

[1]
A. Gerez, O. E. Goñi, and L. Leiva, “Increased Accuracy in Indoor Location based on Neural Networks”, Elektron, vol. 4, no. 2, pp. 74–80, Dec. 2020, doi: 10.37537/rev.elektron.4.2.114.2020.