Acquisition and Processing of GPS signals based on Software Defined Radio

Autores

  • Lucas Castillo Delacroix Facultad de Ciencias Exactas y Tecnologia - Universidad Nacional de Tucuman
  • Mariano Fagre Consejo Nacional de Investigaciones Cientificas y Tecnicas - CONICET https://orcid.org/0000-0002-0073-6371
  • Isidoro Vaquila INVAP S.E.
  • Miguel Angel Cabrera Facultad de Ciencias Exactas y Tecnologia - Universidad Nacional de Tucuman

DOI:

https://doi.org/10.37537/rev.elektron.8.2.195.2024

Palavras-chave:

GNSS, Receiver, SDR

Resumo

This paper presents the development of a software tool that implements an acquisition block for GPS signals using SDR technology, specifically devices like the HackRF One and RTL-SDR. The tool, implemented  in Python, successfully detects satellites and estimates their parameters, offering customizable algorithm settings and the capability to visualize the satellite search space in three dimensions. Comparative tests with the GNSS-SDR software tool demonstrated excellent performance, providing a solid foundation for further development toward a complete SDR-based GNSS receiver. This work highlights the potential of SDR platforms for research and development, emphasizing their flexibility, potential for future upgrades, and cost-effectiveness in advancing future GNSS technologies.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Groves, P. D., Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, Artech House, 2021.

Dabove, P., & Manzino, A. M., GNSS positioning using smartphones: challenges and opportunities, Electronics, 9(2), 258, 2020.

Misra, P., & Enge, P., Global Positioning System: Signals, Measurements, and Performance (2nd ed.). Ganga-Jamuna Press, 2018.

Kaplan, E. D., & Hegarty, C. J., Understanding GPS/GNSS: Principles and Applications, Artech House, 2017.

Angrisano, A., Gaglione, S., & Gioia, C., Performance assessment of assisted GNSS for smartphones in hybrid positioning mode, Sensors, 13(9), 11485-11505, 2013.

Rao, Y. S., Wang, R., & Zhang, X., Advances in GNSS-R Technologies and Applications: A Survey, Remote Sensing, 12(8), 1335, 2020.

Petovello, M. G., & Lachapelle, G., Software-defined GNSS receivers: Architecture, design, and future trends, IEEE Transactions on Aerospace and Electronic Systems, 59(1), 123-138, 2023.

Borre, K., & Akos, D. M., Flexible GNSS receivers: The potential of SDR, Navigation: Journal of the Institute of Navigation, 69(4), 321-335, 2022.

Gamba, F., Tiberius, C., & Teunissen, P. J. G., Challenges and advancements in multi-constellation GNSS positioning: Focusing on Precise Point Positioning (PPP), GPS Solutions, 28(1), 23-38, 2024.

Fernandez-Prades, C., & Seco-Granados, G., GNSS-SDR: Enhancing research capabilities in GNSS signal processing with open-source tools, Proceedings of the International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2021), 123-134, 2021.

Closas, P., Seco-Granados, G., & Fernandez-Prades, C., Open-source software-defined GNSS receivers: A versatile tool for signal processing and algorithm validation, Navigation: Journal of the Institute of Navigation, 69(4), 407-419, 2022.

Fernandez-Prades, C., Closas, P., & Seco-Granados, G., GNSS-SDR: An open-source tool for research and experimentation in GNSS signal processing, IEEE Transactions on Aerospace and Electronic Systems, 59(2), 789-798, 2023.

Söderholm, S., Bhuiyan, M.Z.H., Thombre, S. et al. A multi-GNSS software-defined receiver: design, implementation, and performance benefits. Ann. Telecommun. 71, 399–410, 2016. https://doi.org/10.1007/s12243-016-0518-7.

Zhao, J., Chang, J., Yin, R., & Wang, C., Acquisition and tracking loops based on software defined radio, Symposium on ICT and Energy Efficiency and Workshop on Information Theory and Security (CIICT 2012), pp. 136-141, 2012. doi: 10.1049/cp.2012.1878.

Htay, H., Lwin, Z., & Hla, T., Implementation of Signal Acquisition and Tracking for GPS-Based Software Defined Radio Receiver. International Journal of Geoinformatics, 19(2), 55–64, 2023. https://doi.org/10.52939/ijg.v19i2.2567

Liu, Y., Li, J., & Wang, S., Implementation of GNSS signal processing using Python libraries, Digital Signal Processing, 120, 103-112, 2022.

Akos, D. M., Normark, P. L., Enge, P., Hansson, A. & Rosenlind, A., Real-Time GPS Software Radio Receiver, Proceedings of the 2001 National Technical Meeting of The Institute of Navigation, 2001.

Humphreys, T., Psiaki, M., & Kintner, P., GNSS Receiver Implementation on a DSP: Status Challenges and Prospects, Proceedings of the 19th International Technical Meeting of the Satellite Division of the Institute of Navigation ION GNSS, vol. 4, 2006.

Borre, K., Akos, D. M., Bertelsen N., Rinder P., & Jensen S. H., A software-defined GPS and Galileo receiver: a single-frequency approach, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, MA, 2007. https://doi.org/10.1007/978-0-8176-4540-3

Schmidt, E., Akopian, D., & Pack, D. J., Development of a Real-Time Software-Defined GPS Receiver in a LabVIEW-Based Instrumentation Environment. IEEE Transactions on Instrumentation and Measurement, Vol. 67(9), 2082-2096, 2018.

Capuano, P., Lo Presti, L., & Lohan, E. S., Real-time GNSS signal processing using software-defined radios: Challenges and solutions, Sensors, 22(7), 2448, 2022.

Rao, B. R., & Sathyanarayana, K., Implementation of GNSS SDR receivers: Techniques and applications, IEEE Access, 11, 567-580, 2023.

Konovaltsev, A., & Hein, G. W., Advances in GNSS software-defined radios: From theory to practice, Journal of Satellite Communications and Navigation, 10(2), 104-116, 2023.

Great Scott Gadgets, HackRF One [Software Defined Radio]. https://greatscottgadgets.com/hackrf, 2014.

Osmocom, RTL-SDR [Software Defined Radio]. https://osmocom.org/projects/rtl-sdr, 2012

Gold, R., Optimal binary sequences for spread spectrum multiplexing, IEEE Transactions on Information Theory, 13(4), 619-621. doi:10.1109/TIT.1967.1054010, 1967.

Rohling, H., Radar CFAR thresholding in clutter and multiple target situations. IEEE Transactions on Aerospace and Electronic Systems, AES-19(4), 608-621. doi:10.1109/TAES.1983.309362, 1983.

Gao, Z., Liu, F., Wen, Y., & Wang, X., An overview on target detection techniques in CFAR processing for non-Gaussian interference environment. IEEE Access, 6, 5630-5645. doi:10.1P109/ACCESS.2017.2778080, 2018.

Castillo Delacroix L., Fagre M., Vaquila I., Cabrera M. A., PyGNSS-SDR (versión 1.0) [repository], GitHub, 2024, https://github.com/ltcfacet/PyGNSS-SDR

Publicado

2024-12-15

Edição

Seção

Procesamiento de señales

Como Citar

[1]
L. Castillo Delacroix, M. Fagre, I. Vaquila, e M. A. Cabrera, “Acquisition and Processing of GPS signals based on Software Defined Radio”, Elektron, vol. 8, nº 2, p. 43–53, dez. 2024, doi: 10.37537/rev.elektron.8.2.195.2024.