Study and development of a focused ultrasonic sensor suitable for optoacoustic tomography

Autores

  • Roberto M. Insabella FIUBA
  • Martín Germán González FIUBA
  • Ligia Ciocci Brazzano
  • David Barbieri Universidad Nacional de la Matanza

DOI:

https://doi.org/10.37537/rev.elektron.4.2.100.2020

Palavras-chave:

optoacoustic tomography, ultrasonic sensor, piezoelectric polymer

Resumo

In this work we present the study, development and characterization of a cylindrical focused ultrasonic sensor based on a piezoelectric polymeric material. For the design and implementation of the transducer, we carried out simulations using the commercial tool k-Wave and we used a construction method with great repeatability and low cost. For the characterization of the detection system (sensor + amplifier), we made electrical and acoustic measurements that allowed to determine its sensitivity and equivalent pressure noise. The results of this work show that the implemented sensor is suitable for optoacoustic tomography.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

C. Lutzweiler and D. Razansky, “Optoacoustic imaging and tomography: reconstruction approaches and outstanding challenges in image performance and quantification,” Sensors, vol. 13, pp. 7345–7384, 2013.

G. Paltauf, R. Nuster, and P. Burgholzer, “Characterization of integrating ultrasound detectors for photoacoustic tomography,” Journal of Applied Physics, vol. 105, 2009.

A. Abadi, L. C. Brazzano, P. Sorichetti, and M. G. Gonzalez, “Sensor piezoelectrico con geometria lineal para tomografia optoacustica: Implementacion y caracterizacion electrica,” Revista Elektron, vol. 1, no. 2, pp. 53–57, 2017.

M. G. Gonzalez, B. Abadi, L. C. Brazzano, and P. Sorichetti, “Linear piezoelectric sensor for optoacoustic tomography: electroacoustic characterization,” in Proc. IEEE Argencon, 2018, pp. 1–4.

B. Treeby and B. Cox, “k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt., vol. 15, p. 021314, 2010.

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 52, pp. 1577–1583, 2005.

D. Queiros, X. L. Dean-Ben, A. Buehler, D. Razansky, A. Rosenthal, and V. Ntziachristos, “Modeling the shape of cylindrically focused transducers in three-dimensional optoacoustic tomography,” J. Biomed. Opt., vol. 18, p. 7, 2013.

M. G. Gonzalez, P. Sorichetti, and G. Santiago, “Reducing the capacitance of piezoelectric film sensors,” Rev. Sci. Instrum., vol. 87, p. 045003, 2016.

M. G. Gonzalez, P. A. Sorichetti, L. C. Brazzano, and G. D. Santiago, “Electromechanical characterization of piezoelectric polymer thin films in a broad frequency range,” Polym. Test., vol. 37, 2014.

M. G. Gonzalez, L. Riobo, L. C. Brazzano, F. Veiras, P. Sorichetti, and G. Santiago, “Generation of sub-microsecond quasi-unipolar pressure pulses,” Ultrasonics, vol. 98, pp. 15–19, 2019.

K. Mackenzie, “Nine-term equation for sound speed in the oceans,” J. Acousti. Soc. Am., vol. 70, pp. 807–812, 1981.

A. F. Vidal, L. C. Brazzano, C. Matteo, P. Sorichetti, and M. G. Gonzalez, “Parametric modeling of wideband piezoelectric polymer sensors: design for optoacoustic applications,” Rev. Sci. Instrum., vol. 88, no. 9, p. 095004, 2017.

R. Nuster, S. Gratt, K. Passler, H. Gruen, T. Berer, P. Burgholzer, and G. Paltauf, “Comparison of optical and piezoelectric integrating line detectors,” Proc. of SPIE, vol. 7177, pp. 71 770T–1–8, 2009.

G. Wissmeyer, M. Pleitez, A. Rosenthal, and V. Ntziachristos, “Looking at sound: optoacoustics with all-optical ultrasound detection,” Light: Science and Applications, vol. 7, pp. 1–16, 2018.

G. Paltauf, P. Hartmair, G. Kovachev, and R. Nuster, “Piezoelectric line detector array for photoacoustic tomography,” Photoacoustics, vol. 8, pp. 28–36, 2017.

L. Riobo, F. Veiras, M. T. Garea, and P. Sorichetti, “Software-defined optoelectronics: Space and frequency diversity in heterodyne interferometry,” IEEE Sensors, vol. 18, pp. 5753–5760, 2018.

J. Bauer-Marschallinger, K. Felbermayer, and T. Berer, “All-optical photoacoustic projection imaging,” J. Biomed. Opt. Express, vol. 8, no. 9, pp. 3938–3951, 2017.

G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer, “Photoacoustic tomography using a mach-zehnder interferometer as an acoustic line detector,” Appl. Opt., vol. 46, no. 16, pp. 3352–3358, 2007.

Publicado

2020-12-14

Edição

Seção

Optoeletrônica e Microeletrônica

Como Citar

[1]
R. M. Insabella, M. G. González, L. Ciocci Brazzano, e D. Barbieri, “Study and development of a focused ultrasonic sensor suitable for optoacoustic tomography”, Elektron, vol. 4, nº 2, p. 69–73, dez. 2020, doi: 10.37537/rev.elektron.4.2.100.2020.