Simple method to determine the resolution and sensitivity of systems for optoacoustic tomography

Authors

  • Martin German Gonzalez GLOMAE-FIUBA
  • Eduardo Omar Acosta Universidad de Buenos Aires
  • Guillermo Santiago FIUBA

DOI:

https://doi.org/10.37537/rev.elektron.2.2.47.2018

Keywords:

optoacoustic tomography, spatial resolution, sensitivity

Abstract

In this paper we present a method to determine the spatial resolution and sensitivity of systems for optoacoustic tomography (OAT). The method consists of obtaining the image of a sample based on a transparent film embedded in agarose. The film has a certain pattern made with a laser printer that allows to obtain the system spatial resolution. Moreover, since the damage threshold of the ink pattern is similar to that of living tissue, it is also possible to determine if the system is sensitive enough to be applied on biological samples. The method is straightforward, fast and repeatable, and was tested in a OAT system for obtaining two-dimensional images developed in our laboratory.

Downloads

Download data is not yet available.

References

L. Wang, Photoacoustic imaging and spectroscopy. Boca Ratón, Florida, USA: CRC Press, 2009.

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Acoustic inversion in optoacoustic tomography: A review,” Current Medical Imaging Reviews, vol. 9, pp. 318–336, 2013.

M. Xu and L. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum., vol. 77, p. 041101, 2006.

A. Buehler, “Multi-spectral optoacoustic tomography: Methods and applications,” Ph.D. dissertation, Technische Universitaet Muenchen, Munich, Germany, 2014.

J. Bauer-Marschallinger, K. Felbermayer, and T. Berer, “All-optical photoacoustic projection imaging,” J. Biomed. Opt. Express, vol. 8, no. 9, pp. 3938–3951, 2017.

G. Paltauf, P. Hartmair, G. Kovachev, and R. Nuster, “Piezoelectric line detector array for photoacoustic tomography,” Photoacoustics, vol. 8, pp. 28–36, 2017.

R. Ma, A. Taruttis, V. Ntziachristos, and D. Razansky, “Multispectral optoacoustic tomography (msot) scanner for whole-body small animal imaging,” Opt. Express, vol. 17, pp. 21 414–21 426, 2009.

Y. Xu, L. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys., vol. 31, no. 4, pp. 724–733, 2004.

G. Paltauf, R. Nuster, and P. Burgholzer, “Characterization of integrating ultrasound detectors for photoacoustic tomography,” Journal of Applied Physics, vol. 105, 2009.

A. Abadi, L. C. Brazzano, P. Sorichetti, and M. G. Gonzalez, “Sensor piezoeléctrico con geometrı́a lineal para tomografı́a optoacústica: Implementación y caracterización eléctrica,” Revista Elektron, vol. 1, no. 2, pp. 53–57, 2017.

M. G. González B. Abadi, L. C. Brazzano, and P. Sorichetti, “Linear piezoelectric sensor for optoacoustic tomography: electroacoustic characterization,” in 2018 IEEE Biennial Congress of Argentina (ARGENCON), 2018.

P. M. Rocca, L. C. Brazzano, E. Acosta, and M. G. Gonzalez, “Reconstruccion de imagenes optoacusticas: Efecto de los sensores piezoelectricos de banda ancha,” Revista Elektron, vol. 1, no. 2, pp. 58–65, 2017.

K. Zell, J. Sperl, M. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Bio., vol. 52, no. 20, p. N475, 2007.

American National Standard for the Safe Use of Lasers in Health Care Facilities: Standard Z136.1-2000, ANSI, Inc., New York, 2000.

Downloads

Published

2018-12-03

Issue

Section

Bioengineering

How to Cite

[1]
M. G. Gonzalez, E. O. Acosta, and G. Santiago, “Simple method to determine the resolution and sensitivity of systems for optoacoustic tomography”, Elektron, vol. 2, no. 2, pp. 63–66, Dec. 2018, doi: 10.37537/rev.elektron.2.2.47.2018.