Optimization of the illumination and projection system for a multiparametric acousto-optic sensor

Authors

  • Patricia María Elena Vázquez Universidad de Buenos Aires, Facultad de Ingeniería, Grupo de Láser, Óptica de Materiales y Aplicaciones Electromagnéticas (GLOMAE) https://orcid.org/0000-0002-8652-781X
  • Germán Eduardo Caro Universidad de Buenos Aires, Facultad de Ingeniería, Grupo de Láser, Óptica de Materiales y Aplicaciones Electromagnéticas (GLOMAE); CONICET

DOI:

https://doi.org/10.37537/rev.elektron.8.1.190.2024

Keywords:

optics system design, optimization, aberrations

Abstract

In previous works we presented a novel multiparametric sensor to simultaneously measure the refractive index and the speed of sound in a liquid by means of the acousto-optic effect. The sensor requires an illumination system that expands the laser beam so that it interacts effectively with the liquid under study. Also, a projection system is necessary in order to adequately capture the diffraction  pattern at the cell exit. In this article, we present the optimization of the sensor illumination and projection system using the optical design computational tool Zemax OpticStudio. The considered range of refractive indices of the liquid samples is between 1.33 and 1.51. The results show a correct expansion of the incident beam on the cell, and the projection system achieves an image with very few aberrations and an adequate angular separation between the maxima of the diffraction pattern. From the resulting dimensions of the sensor after the illumination and projection system optimization, we affirm that it is compact and portable.

Downloads

Download data is not yet available.

Author Biographies

  • Patricia María Elena Vázquez, Universidad de Buenos Aires, Facultad de Ingeniería, Grupo de Láser, Óptica de Materiales y Aplicaciones Electromagnéticas (GLOMAE)

    PhD student - E.E. - Graduate Research Assistant - Graduate Teaching Assistant. Universidad de Buenos Aires, Facultad de Ingeniería. Becaria Peruilh FIUBA.

    Ingeniera electrónica FIUBA.

  • Germán Eduardo Caro, Universidad de Buenos Aires, Facultad de Ingeniería, Grupo de Láser, Óptica de Materiales y Aplicaciones Electromagnéticas (GLOMAE); CONICET
    Doctorando en Universidad de Buenos Aires, Facultad de Ingeniería, Grupo de Láser, Óptica de Materiales y Aplicaciones Electromagnéticas (GLOMAE), Becario doctoral CONICET;
    Licenciado en Física Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales FCEN.

References

J. Corach, P. A. Sorichetti and S. D. Romano, “Electrical and ultrasonic properties of vegetable oils and biodiesel,” Fuel, vol. 139, p. 466-471, 2015. https://doi.org/10.1016/j.fuel.2014.09.026

J. Corach, P. A. Sorichetti and S. D. Romano, “Electrical properties and kinematic viscosity of biodiesel,” Fuel, vol. 299, pp. 120841, 2021. https://doi.org/10.1016/j.fuel.2021.120841

J. Türck, A. Singer, A. Lichtinger, M. Almaddad, R. Türck, M. Jakob, T. Garbe, W. Ruck and J. Krahl, “Solketal as a renewable fuel component in ternary blends with biodiesel and diesel fuel or HVO and the impact on physical and chemical properties,” Fuel, vol. 310, pp. 122463, 2022. https://doi.org/10.1016/j.fuel.2021.122463

P.A. Sorichetti and S. D. Romano, “Physico-chemical and electri- cal properties for the production and characterization of Biodiesel,” Physics and Chemistry of Liquids, vol. 43, no. 1, pp. 37-48, 2005. 10.1080/0031910042000303536

Romano, Silvia Daniela and Sorichetti, Patricio Anı́bal, “Relations Between the Properties Required by International Standards and Dielectric Properties of Biodiesel.” London: Springer London, pp. 93-99, 2011. https://doi.org/10.1007/978-1-84996-519-4

J. Corach, E. Fernández Galván, P. A. Sorichetti and S. D. Romano, “Broadband permittivity sensor for biodiesel and blends,” Fuel, vol. 254, pp. 115679, 2019. https://doi.org/10.1016/j.fuel.2019.115679

S. Mandalunis, P. A. Sorichetti and S. D. Romano, “Relative permittivity of bioethanol, gasoline and blends as a function of temperature and composition,” Fuel, vol. 293, pp. 120419, 2021. https://doi.org/10.1016/j.fuel.2021.120419

A. Lichtinger, M. J. Poller, J. Türck, O. Schröder, T. Garbe, J. Krahl, A. Singer, M. Jakob and J. Albert, “Nile Red as a Fluorescence Marker and Antioxidant for Regenerative Fuels,” Energy Technology, vol. 11, no. 11, pp. 2300260, 2023. https://doi.org/10.1002/ente.202300260

M. Colman, P. A. Sorichetti and S. D. Romano, “Refractive index of biodiesel-diesel blends from effective polarizability and density,” Fuel, vol. 211, pp. 130-139, 2018. https://doi.org/10.1016/j.fuel.2017.09.050

Corach, Julián and Alviso, Dario, “Optical properties as a tool for the biodiesel industry: A review,” Biofuels, Bioproducts and Biorefining, vol. 17, no. 4, pp. 1085-1100, 2023. https://doi.org/10.1002 /bbb.2494

S. D. Romano and P. A. Sorichetti, “Refractive Index and Effective Polarizability of Biodiesel,” J Petro Chem Eng, vol. 1, no. 1, pp. 61-65, 2023.

P. A. Sorichetti and S. D. Romano, “Inverse QSPR estimation of molar mass and unsaturation of FAME, BD, and blends from refractive index and speed of sound measurements,” Fuel, vol. 365, pp. 131018, 2024. https://doi.org/10.1016/j.fuel.2024.131018

E. V. Oreglia, P. M. E. Vázquez, C. L. Matteo, P. A. Sorichetti, F. E. Veiras, L. Ciocci Brazzano, “Medición simultánea de velocidad del sonido e ı́ndice de refracción en lı́quidos,” in 10ma Reunión Ibero Americana de Óptica y 13vo Encuentro Latinoamericano de Óptica, Lasers y sus aplicaciones (RIAO-OPTILAS), Cancún, México, 2019.

J. V. Hughes, “A new precision refractometer,” J. of Sci. Instrum, vol. 18, pp. 234, 1941.

P. M. E. Vázquez, E. V. Oreglia, L. Ciocci Brazzano, F. E. Veiras, C. L. Matteo and P. A. Sorichetti, “Celdas en cuña para refractometrı́a: criterios de selección de materiales y parámetros,” Elektron, vol. 4, no. 1, 2020. https://doi.org/10.37537/rev.elektron.4.1.85.2020

C. V. Raman and N. S. Nagendra Nath, “The diffraction of light by high frequency sound waves,” Proc. Indian Acad. Sci., vol. 2, pp. 406-413, 1935.

M. Duocastella, Ss Surdo, A. Zunino, A. Diaspro and P. Saggau, “Acousto-optic systems for advanced microscopy,” Journal of Physics: Photonics, vol. 3, no. 1, pp. 012004, 2020. https://doi.org/10.1088/2515-7647/abc23c

B. Mestre-Torà and M. Duocastella, “Enhanced light focusing inside scattering media with shaped ultrasound,” Scientific Reports, vol. 13, no. 11511, p. 125103, 2023. https://doi.org/10.1038/s41598-023-

-5

B. Pan, H. Liu, Hongxuan, Y. Huang, Z. Yu, H. Li, Y. Shi, L. Liu, and D. Dai, “Perspective on Lithium-Niobate-on-Insulator Photonics Utilizing the Electro-optic and Acousto-optic Effects,” ACS Photonics, vol. 10, no. 7, pp. 2078-2090, 2023. https://doi.org/10.1021/acsphotonics.2c01589

L. Tian, Q. Shen and H. Chang, “A novel progressive wave gyroscope based on acousto-optic effects,” Microsystems & Nanoengineering, vol. 8, no. 95, 2022. https://doi.org/10.1038/s41378-022-00429-4

P. A. Sorichetti, C. L. Matteo and A. J. Marzocca, “Optimization of sensor arrays for beam position estimation,” Sensors and Actuators A, vol. 87, no. 1-2, 2000. https://doi.org/10.1016/S0924-4247(00)00468-4

P. M. E. Vázquez and L. M. Riobó and M. T. Garea and F. E. Veiras, “Design of an optoelectronic sensor for beam displacement measurements: application to laser triangulation,” in 2018 IEEE Biennial Congress of Argentina (ARGENCON), Tucumán, Argentina, pp. 1-7, 2018. https://doi.org/10.1109/ARGENCON.2018.8646200

P. M. E. Vázquez and F. E. Veiras and Ciocci Brazzano, L. and P. A. Sorichetti, “Design method of optical detection systems based on transimpedance amplifiers,” Review of Scientific Instruments, vol. 92, no. 11, pp. 114704, 2021. https://doi.org/10.1063/5.0054869

H. Gross, Handbook of Optical Systems. Wiley Online Library, 2005.

Zemax OpticStudio, Copyright ©, ZEMAX LLC.

GCL-010165A BK7 Plano-Convex Lens, Daheng Optics. http://www.eot.it/pdf/China %20Daheng %20Optics %20catalog %202012.pdf

Published

2024-06-15

Issue

Section

Optoelectronics and microelectronics