FPGA Algorithm Implementation for Parasitic Analysis
DOI:
https://doi.org/10.37537/rev.elektron.6.1.149.2022Keywords:
Parasitic Analysis, Image Processing, HLS, FPGAAbstract
An efficient parasite control reduces significant losses in the agribusiness, but current methods involve costs and delays. Therefore, the development of a portable device to automates this task is proposed. This work presents a hardware implementation of an automatic parasite egg counting algorithm using high-level synthesis. The results demonstrate the feasibility of the implementation, with an 87% accuracy operating at a rate of up to 65 frames per second and an occupation of LUTs less than 45%, considering two commercial kits (PYNQ-Z1 and ULTRA96V2).Downloads
References
Bulman, M. "Pérdidas económicas directas e indirectas por parásitos internos y externos de los animales domésticos en Argentina". Anales de la Academia Nacional de Agronomia y Veterinaria. 2012. Tomo LXVI. Buenos Aires. Argentina. ISSN. 0327-8093 pag. 76-176.
Fiel, C. A.; Steffan, P. E.; Ferreyra, D. A. 2011. Diagnóstico de las parasitosis más frecuentes en rumiantes: técnicas de diagnóstico e interpretación de resultados. Primera edición - Tandil: Abad Benjamín, 2011. ISBN 978-987-33-1502-2
T.H.M. Mes, M. Eysker, H.W. Ploeger. "A simple, robust and semi-automated parasite egg isolation protocol." Nature protocols 2.3: 486-489, 2007.
Ghazali, Kamarul H., Raafat S. Hadi, Z. Mohamed. "Automated system for diagnosis intestinal parasites by computerized image analysis." Modern Applied Science 7.5: 98, 2013.
Slusarewicz, Paul, et al. "Automated parasite faecal egg counting using fluorescence labelling, smartphone image capture and computational image analysis." International journal for parasitology 46.8: 485-493, 2016.
A. Akintayo, G.L. Tylka, A.K. Singh, B. Ganapathysubramanian, A. Singh, S. Sarkar, S "A deep learning framework to discern and count microscopic nematode eggs." Scientific reports 8.1, 2018.
D.G. Bailey. "Image processing using FPGAs.", 2019.
D.G. Bailey. "The advantages and limitations of high level synthesis for FPGA based image processing." Proceedings of the 9th International Conference on Distributed Smart Cameras. 2015.
A. Cortes, I. Velez, A. Irizar. "High level synthesis using Vivado HLS for Zynq SoC: Image processing case studies." 2016 Conference on Design of Circuits and Integrated Systems (DCIS). IEEE, 2016.
S. Lahti, P. Sjovall, J. Vanne, y T. D. Hamalainen, «Are We There Yet? A Study on the State of High-Level Synthesis», IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 38, n.o 5, pp. 898-911, may 2019, doi: 10.1109/TCAD.2018.2834439.
USB Microscope Cameras, https://www.dinolite.us/en/products/digital-microscopes
J. Trein, A. Th Schwarzbacher, B. Hoppe. "FPGA implementation of a single pass real-time blob analysis using run length encoding." MPC-Workshop, February. 2008.
W. Burger, M. Burge, “Regions in binary images“ en Digital Image processing, 2da edición. Londres, Springer, cap 10, pp 209-252, 2016.
CIVETAN, http://www.civetan-conicet.gob.ar
“Classification: Precision and Recall | Machine Learning Crash Course.” Google Developers, 10 Febrero de 2020. Accedido el 9 de Noviembre de 2021. [Online], Disponible en: https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall?hl=es_419.
Downloads
Published
Issue
Section
License
The authors who publish in this journal agree with terms established in the license Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)