Nanometric displacements measurement in piezoelectric polymers using bivariate empirical mode decomposition method in speckle patterns

Authors

  • Pablo Etchepareborda INTI-Electrónica e Informática, Laboratorio de Técnicas Ópticas y Fotónicas (Latof). Av. General Paz 5445, B1650WAB San Martín, Buenos Aires, Argentina
  • Francisco Veiras GLOMAE-FIUBA
  • Arturo Bianchetti INTI-Latof
  • Alejandro Federico INTI-Latof
  • Martin German Gonzalez GLOMAE-FIUBA and CONICET

DOI:

https://doi.org/10.37537/rev.elektron.3.1.76.2019

Keywords:

speckle, bivariate empirical mode descomposition, piezoelectric polymer

Abstract

In this work we present an optical method for the direct determination of the piezoelectric coefficient of polymeric thin films. This is achieved through the measurement of nanometric mechanical displacements generated in the film when it is excited by low frequency harmonic electrical signals (0.5 Hz). The system is based on the temporal speckle pattern interferometry technique and the recovery of phase by using a bivariate empirical mode decomposition framework. The experimental scheme was used on a sample of vinylidene polyfluoride deposited on a glass substrate. The sample presents similar conditions to those found in the characterization of complex fluids by photoacoustic techniques. The measured value agrees with those obtained by other methods and with the value reported by the manufacturer.

Downloads

Download data is not yet available.

References

K. S. Ramadan, D. Sameoto, and S. Evoy, “A review of piezoelectric polymers as functional materials for electromechanical transducers,” Smart Materials and Structures, vol. 23, p. 033001, 2014.

L. C. Brazzano, P. Sorichetti, G. Santiago, and M. González, “Broadband dielectric characterization of piezoelectric poly (vinylidene fluoride) thin films between 278 k and 308 k,” Polymer Testing, vol. 32, pp. 1186–1191, 2013.

Y. Shen, N. Xi, K. W. Lai, and W. J. Li, “A novel pvdf microforce/force rate sensor for practical applications in micromanipulation,” Sensor Rev., vol. 24, pp. 274–283, 2004.

A. F. Vidal, L. C. Brazzano, C. Matteo, P. Sorichetti, and M. G. González, “Parametric modeling of wideband piezoelectric polymer sensors: design for optoacoustic applications,” Rev. Sci. Instrum., vol. 88, p. 095004, 2017.

X. Cao, J. Ma, X. Shi, and Z. Ren, “Effect of tio 2 nanoparticle size on the performance of pvdf membrane,” Appl. Surf. Sci., vol. 253, pp. 2003–2010, 2006.

J. S. Dodds, F. N. Meyers, and K. J. Loh, “Piezoelectric characterization of pvdf-trfe thin films enhanced with zno nanoparticles,” IEEE Sens. J., vol. 12, pp. 1889–1890, 2012.

L. M. Riobo, F. E. Veiras, M. G. Gonzalez, M. T. Garea, and P. A. Sorichetti, “High-speed real-time heterodyne interferometry using software-defined radio,” Appl. Opt., vol. 57, pp. 217–224, 2018.

M. Gonzalez, P. Sorichetti, L. C. Brazzano, and G. Santiago, “Electromechanical characterization of piezoelectric polymer thin films in a broad frequency range,” Polymer Testing, vol. 37, pp. 163–169, 2014.

V. Rathod, D. R. Mahapatra, A. Jain, and A. Gayathri, “Characterization of a large-area pvdf thin film for electro-mechanical and ultrasonic sensing applications,” Sensor. Actuat. A-Phys., vol. 163, pp. 164–171, 2010.

M. G. Gonzalez, E. Acosta, and G. D. Santiago, “Determination of the thermal boundary conductance of gold nanoparticles in aqueous solution using a method based on nanobubble generation,” Appl. Opt., vol. 57, pp. 6229–6232, 2018.

L. Cusato, M. Estevez, M. G. Gonzalez, and G. D. Santiago, “Caracterización de lı́quidos por técnica fotoacústica: Estudio de sensores piezoeléctricos de banda ancha,” Elektron, vol. 1, pp. 8–15, 2017.

E. Acosta, M. G. Gonzalez, P. A. Sorichetti, and G. D. Santiago, “Laser-induced bubble generation on a gold nanoparticle: A nonsymmetrical description,” Phys. Rev. E, vol. 92, p. 062301, 2015.

M. G. Gonzalez, X. Liu, R. Niessner, and C. Haisch, “Lead ion detection in turbid media by pulsed photoacoustic spectrometry based on dissolution of gold nanoparticles,” Sensors and Actuators B: Chemical, vol. 150, pp. 770–773, 2010.

L. Seminara, M. Capurro, P. Cirillo, G. Cannata, and M. Valle, “Phase measurement in temporal speckle pattern interferometry using the fourier transform method with and without a temporal carrier,” Opt. Comm., vol. 217, pp. 141–149, 2003.

Y. Fu, C. J. Tay, C. Quan, and H. Miao, “Wavelet analysis of speckle patterns with a temporal carrier,” Applied optics, vol. 44, no. 6, pp. 959–965, 2005.

A. Federico and G. H. Kaufmann, “Robust phase recovery in temporal speckle pattern interferometry using a 3d directional wavelet transform,” Optics letters, vol. 34, no. 15, pp. 2336–2338, 2009.

G. Rilling, P. Flandrin, P. Gonalves, and J. Lilly, “Bivariate empirical mode decomposition,” IEEE Signal Process. Lett., vol. 14, pp. 936–939, 2007.

P. Etchepareborda, A. Bianchetti, A. L. Vadnjal, A. Federico, and G. H. Kaufmann, “Simplified phase-recovery method in temporal speckle pattern interferometry,” Applied optics, vol. 53, no. 30, pp. 7120–7128, 2014.

P. Etchepareborda, A. Bianchetti, F. E. Veiras, A. L. Vadnjal, A. Federico, and G. H. Kaufmann, “Comparison of real-time phase-reconstruction methods in temporal speckle-pattern interferometry,” Applied optics, vol. 54, no. 25, pp. 7663–7672, 2015.

P. Etchepareborda, “Investigación e implementación de técnicas de procesamiento de señales e imágenes para la inspección óptica de microsistemas,” Ph.D. dissertation, Univ. de Buenos Aires, Buenos Aires, Argentina, 2016.

M. Gonzalez, P. Sorichetti, and G. Santiago, “Reducing the capacitance of piezoelectric film sensors,” Rev. Sci. Instrum., vol. 87, p. 045003, 2016.

A. Bianchetti, F. E. Veiras, P. Etchepareborda, A. L. Vadnjal, A. Federico, and G. H. Kaufmann, “Amplitude and phase retrieval in simultaneous π/2 phase-shifting heterodyne interferometry using the synchrosqueezing transform,” Applied optics, vol. 54, no. 8, pp. 2132–2140, 2015.

Published

2019-06-15

Issue

Section

Optoelectronics and Microelectronics

How to Cite

[1]
P. Etchepareborda, F. Veiras, A. Bianchetti, A. Federico, and M. G. Gonzalez, “Nanometric displacements measurement in piezoelectric polymers using bivariate empirical mode decomposition method in speckle patterns”, Elektron, vol. 3, no. 1, pp. 52–57, Jun. 2019, doi: 10.37537/rev.elektron.3.1.76.2019.