Potential Advantages of the Pseudospectral Method in Auralizations

Authors

DOI:

https://doi.org/10.37537/rev.elektron.3.2.75.2019

Keywords:

auralization, pseudospectral method, numerical methods

Abstract

Auralization is a term introduced to describe the recreation of the experience of acoustic phenomena a listener would perceive in a specific soundfield. Sound propagation in a soundfield can be simulated with geometric based models or wave based models. Each one offers particular advantages and disadvantages. For wave based models, the finite element method, the boundary element method or the finite difference method are widely mentioned. They are characterized for achieving very precise results for individual frequencies applied to small and moderately sized rooms. Geometric methods lead to the ray tracing method or the image source method. These methods achieve good results for high frequencies and are efficient in large rooms and complex structures, but are not able to represent in a simple manner specific wave phenomena such as diffraction. Commercial software used to produce auralizations is usually based on a hybrid model combining ray tracing and image sources. This paper proposes an exploration on possible advantages and challenges on the use of the k-space pseudospectral method for wave based auralizations.

Downloads

Download data is not yet available.

Author Biographies

  • Jorge Petrosino, Universidad Nacional de Lanús

    Ingeniero Electrónico UBA

    Profesor Asociado de Acústica y Electrónica de la Licenciatura en Audiovisión, Departamiento de Humanidades y Artes, Universidad Nacional de Lanús

  • Georgina Alejandra Lizaso, Universidad Nacional de Lanús

    Licenciada en Audiovisión (Universidad Nacional de Lanús)

    Becaria doctoral Conicet-UNLa. Tema: Procesamiento de señales con arreglo de transductores. 

    Ayudante de primera en las cátedras de Acústica, Procesamiento de señales y Electrónica de las comunicaciones de la Licenciatura en Audiovisión, Universidad Nacional de Lanús.

  • Lucas Landini, Universidad Nacional de Lanús
    Licenciado en Audiovisión, Departamento de Humanidades y artes, Un iversidad Nacional de Lanús
  • Andrés Bonino Reta, Universidad Nacional de Lanús
    Estudiante de la Licenciatura en Audiovisión, Departamento de Humanidades y Artes, Universidad Nacional de Lanús

References

M. Vorländer, Auralization: fundamentals of acoustics, modelling, simulation, algorithms and acoustic virtual reality, Berlin, Alemania: Springer Science & Business Media, 2008.

D. J. Meares, “The Use of Scale Models in the Acoustic Design of Studios,” SMPTE J., vol. 87, no. 10, pp. 684-687, Oct. 1978.

G. M. Naylor, “ODEON-Another hybrid room acoustical model,” Appl. Acoust., vol. 38, no. 2-4, pp. 131-143, 1993.

M. Schroeder, “Die statistischen Parameter der Frequenzkurven von groβen Räumen,” Acta Acust. united Ac., vol. 4, no. 5, pp. 594-600, Jan. 1954.

M. R. Schroeder, y K. H. Kuttruff, “On frequency response curves in rooms. Comparison of experimental, theoretical, and Monte Carlo results for the average frequency spacing between maxima,” J. Acoust. Soc. Am., vol. 34, no. 1, pp. 76-80, 1962.

H. V. Fuchs, Applied Acoustics: Concepts, Absorbers, and Silencers for Acoustical Comfort and Noise Control: Alternative Solutions-Innovative Tools-Practical Examples, Berlin, Germany: Springer Science & Business Media, 2013.

J. O. Smith, Physical audio signal processing: For virtual musical instruments and audio effects. San Francisco, CA, USA: W3K Publishing, 2018.

L. Chen, L. Liu, W. Zhao, y H. Chen, “2D acoustic design sensitivity analysis based on adjoint variable method using different types of boundary elements,” Acoust. Aust., vol. 44, no. 2, pp. 343-357, Jul. 2016.

M. Vorländer, “Computer simulations in room acoustics: Concepts and uncertainties,” J. Acoust. Soc. Am., vol. 133, no. 3, pp. 1203-1213, Mar. 2013.

C. Canuto, M.Y. Hussaini, A. Quarteroni, y T. A. Zang, Spectral methods: Fundamentals in single domains, Berlin, Germany: Springer-Verlag, Berlin, 2006.

A. Solomonoff, y E. Turkel, “Global properties of pseudospectral methods,” J. Comput. Phys., vol. 81, no. 2, pp. 239-276, Apr. 1989.

G. T. Huntington, y A. V. Rao, “A comparison between global and local orthogonal collocation methods for solving optimal control problems,” en 2007 Amer. Contr. Conf. IEEE, pp.1950-1957.

S. A. Orszag, “Comparison of pseudospectral and spectral approximation,” Stud. Appl. Math., vol. 51, no. 3, pp. 253-259, 1972.

J. Virieux, H. Calandra, y R. E. Plessix, “A review of the spectral, pseudo-spectral, finite-difference and finite-element modelling techniques for geophysical imaging,” Geophys. Prospect., vol. 59, no. 5, pp. 794-813, Sep. 2011.

K. Firouzi, B. Cox, B. Treeby, y N. Saffari, “A first-order k-space model for elastic wave propagation in heterogeneous media,” J. Acoust. Soc. Am., vol. 129, no. 4, pp. 2611-2611, Apr. 2011.

Q. H. Liu, “The PSTD algorithm: A time ‐ domain method combining the pseudospectral technique and perfectly matched layers,” J. Acoust. Soc. Am., vol. 101, no. 5, pp. 3182, May. 1997.

Y. Jing, F. C. Meral, y G. T. Clement, “Time-reversal transcranial ultrasound beam focusing using a k-space method,” Phys. Med. Biol., vol. 57, no. 4, pp. 901, Jan. 2012.

B. Treeby, M. Tumen, y B. Cox, “Time domain simulation of harmonic ultrasound images and beam patterns in 3D using the k-space pseudospectral method,” en Int. Conf. Medical Image Computing Computer-Assisted Intervention, Berlin, 2011, pp. 363-370.

J. Hargreaves, P. Kendrick, S. Von Hünerbein, “Simulating acoustic scattering from atmospheric temperature fluctuations using a k-space method,” J. Acoust. Soc. Am., vol. 135, no. 1, pp. 83-92, Jan. 2014.

F. Pind, M. S. Mejling, A. P. Engsig-Karup, C. H. Jeong, y J. Stromann-Andersen, “Room Acoustic Simulations using High-Order Spectral Element Methods,” en Euronoise 2018, pp. 2085-2092.

B. E. Treeby, y B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt., vol. 15, no. 2, Mar. 2010, Art. no. 021314.

J. L. Robertson, B. T. Cox, y B. E. Treeby, “Quantifying numerical errors in the simulation of transcranial ultrasound using pseudospectral methods,” en IEEE Int. Ultrasonics Symposium (IUS), 2014, pp. 2000-2003.

M. Aretz, R. Nöthen, M. Vorländer, y D. Schröder, “Combined broadband impulse responses using FEM and hybrid ray-based methods,” en Proc. EAA Symp. Auralization, Jun. 2009, pp. 201-206.

Q. H. Liu, “The pseudospectral time-domain (PSTD) algorithm for acoustic waves in absorptive media,” IEEE T. Ultrason. Ferr., vol. 45, no. 4, pp. 1044-1055, Jul. 1998.

G. Zhao, y Q. H. Liu, “The unconditionally stable pseudospectral time-domain (PSTD) method,” IEEE Microw. Wirel. Co., vol. 13, no. 11, pp. 475-477, Nov. 2003.

Published

2019-12-15

Issue

Section

Acoustics, Audio, and Ultrasonics

How to Cite

[1]
J. Petrosino, G. A. Lizaso, L. Landini, and A. Bonino Reta, “Potential Advantages of the Pseudospectral Method in Auralizations”, Elektron, vol. 3, no. 2, pp. 67–74, Dec. 2019, doi: 10.37537/rev.elektron.3.2.75.2019.