Design and Modeling of Metamaterial-Based Antenna Arrays for Nanosatellite Communication Systems
DOI:
https://doi.org/10.37537/rev.elektron.9.2.217.2025Keywords:
nanosatellite, antenna array, metamaterialAbstract
The design and modeling of compact antenna arrays based on metamaterials for nanosatellite communication systems is presented. The main objective is to optimize performance at 2.45 GHz (S-Band). As a first step, a single coaxially fed antenna was designed on a Rogers RO4350B substrate (0.76 mm thick, εᵣ = 3.48). A unit cell with Minkowski fractal geometry was incorporated into the ground plane, and two opposite corners of the patch were truncated to induce right-hand circular polarization. Different antenna arrays were designed in 1×2 (47 × 100 mm), 1×4 (47 × 165 mm), and 2×2 (75 × 80 mm) configurations, all with the same thickness of 0.76 mm. The feeding networks were implemented using Wilkinson power dividers. These arrays enabled an increase in gain to 5.0 dBi, 7.3 dBi, and 5.9 dBi, as well as an improvement in axial ratio, while maintaining efficiencies between 79% and 87%. The useful bandwidths obtained (VSWR < 2, S₁₁ < -10 dB, axial ratio < 3 dB) were 20.7 MHz, 21.4 MHz and 31.1 MHz. The compact dimensions allow integration with the structure and subsystems onboard a CubeSat: the 1×2 and 2×2 arrays are compatible with a 1U format, while the 1×4 can be integrated into a 2U format.Downloads
References
B. Peraza-Acosta, J. I. Grageda-Arellano, C. Couder-Castañeda, J. Meléndez-Martinez, D. A. Padilla-Pérez, and A. Solis-Santome, “Design and manufacture of CubeSat-type nanosatellite thermal subsystem”, Scientific Reports, vol. 15, 3695, January 2025. https://doi.org/10.1038/s41598-025-86688-3
S. Abulgasem, F. Tubbal, R. Raad, P. I. Theoharis, S. Lu, and S. Iranmanesh, "Antenna Designs for CubeSats: A Review”, IEEE Access, vol. 9, pp. 45289-45324, March 2021. https://doi.org/10.1109/ACCESS.2021.3066632
M. R. Ghaderi, and N. Amiri, “CubeSat Antenna Designs in the Last 2 Decades (2002–2023): A Survey”, International Journal of Aeronautical and Space Sciences, vol. 26, pp. 327–375, January 2025. https://doi.org/10.1007/s42405-024-00800-x
B. Benhmimou, F. Omari, N. Gupta, K. El Khadiri, R. A. Laamara, and M. El Bakkali, “A survey on metasurface-based antennas for CubeSat spacecrafts”, Majlesi Journal of Electrical Engineering (MJEE), vol. 19(2), pp. 192542 (1-17), June 2025. https://doi.org/10.57647/j.mjee.2025.1902.42
A. K. Singh, M. P. Abegaonkar, and S. K. Koul. (2022). Metamaterials for Antenna Applications. CRC Press Taylor & Francis Group. https://doi.org/10.1201/9781003045885
T. Alam, M. T. Islam, and M. Cho. “Near-zero metamaterial inspired UHF antenna for nanosatellite communication system”, Scientific Reports, vol. 9, 3441, March 2019. https://doi.org/10.1038/s41598-019-40207-3
R. K. Prajapati, V. S. Jadaun, D. Patidar, and H. K. Gupta, “Improvement in Parameters of Patch Antenna by Using "Spiral Shapes" Metamaterial Structure”, in National Conference on Recent Trends on Microwave Techniques and Application (Microwave 2012), 2012.
J. L. da Silva Paiva, J. P. da Silva, A. L. Pereira de Siqueira Campos, and H. D. de Andrade, “Using metasurface structures as signal polarisers in microstrip antennas”, IET Microwaves, Antennas & Propagation, vol. 13(1), pp. 23-27, January 2019. https://doi.org/10.1049/iet-map.2018.5112
A. Hemsy, J. E. Ise, M. A. Cabrera, J. Scandaliaris, and M. Fagre, “Metamaterial S-band Patch Antenna Design and Modeling for Nanosatellite Communications” in 1st International Conference on Radio Frequency Communication and Networks (RFCoN), IEEE Xplore, 2025, pp. 1-6. https://doi.org/10.1109/RFCoN62306.2025.11085349
M. Mirazur Rahman, Y. Yang, and S. Dey, "Application of Metamaterials in Antennas for Gain Improvement: A Study on Integration Techniques and Performance”, IEEE Access, vol. 13, pp. 49489-49503, March 2025. https://doi.org/10.1109/ACCESS.2025.3552023
S. Sankaralingam, S. Dhar, A. K. Bag, A. Kundu, and B. Gupta, “Use of Minkowski Fractal Geometry for the Design of Wearable Fully Fabric Compact Antenna”, Journal of Physical Sciences, vol. 18, pp. 7-13, March 2014.
M. A. R. Ohi, Z. Hasan, S. F. B. Faruquee, A. A. M. Kawsar, and A.
Ahmed, “Wideband Minkowski fractal antenna using complementary split ring resonator in modified ground plane for 5G wireless communications”, Engineering Reports, vol. 3(9), e12388, September 2021. https://doi.org/10.1002/eng2.12388
A. Hemsy, J. E. Ise, F. A. Miranda Bonomi, M. A. Cabrera, and M. Fagre, “Miniaturization with Metamaterial of a Triple Band PIFA Antenna for Wi-Fi Communication”, Revista Elektron, vol. 8(2), pp. 77-81, December 2024. https://doi.org/10.37537/rev.elektron.8.2.192.2024
M. Darsono, and E. Wijaya, “Circularly Polarized Proximity-Fed Microstrip Array Antenna for Micro Satellite”, TELKOMNIKA, vol. 11(4), pp. 803-810, December 2013. http://doi.org/10.12928/telkomnika.v11i4.1204
S. Alam, E. Wijanto, B. Harsono, F. Samandatu, M. Upa, and I. Surjati, Design of Array and Circular Polarization Microstrip Antenna for LTE ommunication”, in MATEC Web Conf.: The 1st International Conference on ndustrial, Electrical and Electronics (ICIEE 2018), 2018, paper 03006, p. 1-8. https://doi.org/10.1051/matecconf/201821803006
Commercial Antenna TechApp Consultants Ltd. Datasheet available in https://www.techappconsultants.com/copy-2-of-satraka-antenna-1
Commercial Antenna IQ spacecom. Datasheet available in https://www.iq-spacecom.com/products/antennas#s-band_high_gain
Commercial Antenna PlaneWave Inc. Datasheet available in https://planewaveinc.com/products/antennas/spaceantennas/pw2222-101-s-band-rhcp-tx-2x2-antenna/
Published
Issue
Section
License
The authors who publish in this journal agree with terms established in the license Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)