Comparison of a LoRaWAN network with propagation models in a soybean vegetation environment
DOI:
https://doi.org/10.37537/rev.elektron.8.2.203.2024Keywords:
IoT, LoRaWAN, propagation models with vegetationAbstract
LPWAN networks are low-power, long-range wireless systems, primarily designed to connect Internet of Things (IoT) devices to the network. In the agro-industrial sector, IoT is revolutionizing the industry through the implementation of advanced smart or precision agriculture techniques. One of the key technologies to achieve this goal is LoRa, together with the LoRaWAN network architecture, applied in traditional agricultural practices. This work analyzes the comparison of measurements made by nodes located at different heights in relation to a gateway, evaluating various propagation loss models, as well as specific models that consider excess vegetation. All this in a LoRaWAN-based infrastructure, within a rural environment dedicated to soybean cultivation.Downloads
References
Lora-Alliance (s.f.). What-is-lorawan. Consultado el 15 de septiembre de 2024, desde https://lora-alliance.org/wp-content/uploads/2020/11/what-is-lorawan.pdf
Semtech (s.f.). What is Lora. Consultado 15 de septiembre de 2024, desde https://www.semtech.com/lora/what-is-lora.
Semtech (2021). Portal para el desarrollador, documentos técnicos. Consultado el 15 de septiembre de 2024, desde https://lora-developers.semtech.com/library/tech-papers-and-guides/lora-and-lorawan/
P. Pickering (2017). Desarrollar con LoRa para aplicaciones IoT de baja tasa y largo alcance. Consultado el 15 de septiembre de 2024, desde https://www.digikey.com/es/articles/develop-lora-for-low-rate-long-range-iot-applications
Semtech. (May 2015). LoRa™ Modulation Basics, AN1200.22 Application. Revisión 2. Consultado el 15 de septiembre de 2024, desde https://www.frugalprototype.com/wp-content/uploads/2016/08/an1200.22.pdf
Y. Okumura (1967). Field strength and its variability in VHF and UHF land-mobile radio service (Vol. 16).
Á.C. Aznar, J. R. Robert., J.M.R. Casals, L.J. Roca, S.B. Bori., & M.F. Bataller (2004). Antenas. Univ. Politèc. de Catalunya.
T. Rappaport (2002). Wireless Communications: Principles and Practice. Prentice Hall PTR.
Unión Internacional de Telecomunicaciones. (2019). Recomendación UIT-R P.525-4 (08/2019)– Cálculo de la atenuación en el espacio libre. Consultado el 15 de septiembre de 2024, desde https://www.itu.int/recR-REC-P.525/es.
P. de Fornel & H. Sizun (2006). Radio Wave Propagation for Telecommunication Applications. Springer Berlin Heidelberg.
M.A. Weissberger (1982). An initial critical summary of models for predicting the attenuation of radio waves by trees. ESD-TR-81-101, Electromagnetic Compatibility Analysis Center, Annapolis,Maryland USA, Final Report 833-7.
CCIR (1986). Influences of terrain irregularities and vegetation on troposphere propagation. CCIR Report, 235-236
COST235 (1996). Radio propagation effects on next-generation fixed-service terrestrial telecommunication systems.
D. Santos (2010). Fenología en el Cultivo de Soja: una "hoja de ruta". Segunda edición (2010). Consultado el 15 de septiembre de 2024, desde https://inta.gob.ar/sites/default/files/script-tmp-inta-fenologia-en-el-cultivo- de- soja- una- hoja- de- ruta.pdfs
A. Farhad, D.H. Kim, & J.Y. Pyun (2019). Scalability of LoRaWAN in an urban environment: A simulation study. 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN), 677-681.
A. Raheemah, N. Sabri, M. Salim, P. Ehkan & R.B. Ahmad (2016). New empirical path loss model for wireless sensor networks in mango greenhouses. Computers and Electronics in Agriculture, 127, 553-560.
Downloads
Published
Issue
Section
License
The authors who publish in this journal agree with terms established in the license Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)