FPGA-Based System for Velocity of Detonation Measurements on Detonating Cords

Authors

  • Silvano Renato Rossi UNIVERSIDAD NACIONAL DEL CENTRO DE LA PCIA. DE BUENOS AIRES - Facultad de Ingeniería https://orcid.org/0000-0002-3835-4467
  • Roberto Juan de la Vega UNIVERSIDAD NACIONAL DEL CENTRO DE LA PCIA. DE BUENOS AIRES - Facultad de Ingeniería https://orcid.org/0009-0005-2701-110X
  • Franco Emanuel Déber UNIVERSIDAD NACIONAL DEL CENTRO DE LA PCIA. DE BUENOS AIRES - Facultad de Ingeniería

DOI:

https://doi.org/10.37537/rev.elektron.8.2.198.2024

Keywords:

velocity of detonation, detonating cord, FPGA

Abstract

This work presents the most important aspects of the development of a system designed to measure the velocity of detonation (VOD) of detonating cords used in the mining industry. The system utilizes the point-to-point measuring method, employing optical fibers as sensing elements. It comprises an FPGA device that enables the implementation of a multi-channel, easily scalable system, and a microcontroller that manages the user’s interface. This instrument was developed in response to a request from a detonating cords manufacturing company, addressing the absence of such  equipment in the national market. The VOD meter developed is capable of measuring velocities greater than 7500 m/s, covering most applications in the mining and oil industry.

Downloads

Download data is not yet available.

Author Biographies

  • Silvano Renato Rossi, UNIVERSIDAD NACIONAL DEL CENTRO DE LA PCIA. DE BUENOS AIRES - Facultad de Ingeniería

    Dr. Silvano R. Rossi

    Profesor Asociado

    Dpto. Ing. Electromecánica - Facultad de Ingeniería, UNCPBA

    Núcleo INTELYMEC – CIFICEN (UNCPBA-CICPBA-CONICET)



  • Roberto Juan de la Vega, UNIVERSIDAD NACIONAL DEL CENTRO DE LA PCIA. DE BUENOS AIRES - Facultad de Ingeniería

    Ing. Roberto de la Vega

    Profesor Titular

    Dpto. Ing. Electromecánica - Facultad de Ingeniería, UNCPBA

    Núcleo INTELYMEC 

     

  • Franco Emanuel Déber, UNIVERSIDAD NACIONAL DEL CENTRO DE LA PCIA. DE BUENOS AIRES - Facultad de Ingeniería

    Lic. Franco Déber

    Profesor Adjunto

    Dpto. Ing. Electromecánica - Facultad de Ingeniería, UNCPBA

    Núcleo INTELYMEC 

     

References

O. Khomenko, M. Kononenko, I. Myronoba, and M. Savchenko, “Application of the emulsion explosives in the tunnels construction,” E3S Web of Conferences, vol. 123, pp. 1-15, 2019. https://doi.org/10.1051/e3sconf/201912301039

E. Galante, A. Haddad, and N. Marques, “Application of explosives in the oil industry,” International Journal of Oil, Gas and Coal Engineering, vol. 1, no. 2, pp. 16-22, Aug. 2013. https://doi.org/10.11648/j.ogce.20130102.11

P. A. Eshun, B. O. Afum, and A. Boayke, “Drill and blast performance evaluation at the Obra Pit of Chirano Gold Mines Ltd, Ghana,” Ghana Mining Journal, vol. 6, no. 2, pp. 28-35, Dec. 2016. https://doi.org/10.4314/gm.v16i2.4

A. M. Pedro-Alexandre, S. A. Joe-Boy, and J. Otaño-Noguel, “Design analysis of blasting using compact loads in Cacao quarry,” Minería y Geología, vol. 22, no. 4, pp. 1-16, Oct-Dec. 2006.

V. M. S. R. Murthy, M. S. Tiwari, and A. K. Raina, “Challenges in mining industry and addressing through research and innovation,” Helix – The Scientific Explorer, vol. 10, no. 1, pp. 38-42, Feb. 2020.

https://doi.org/10.29042/2020-10-1-38-42

E. Kabwe, “Velocity of detonation measurement and fragmentation analysis to evaluate blasting efficacy,” Journal of Rock Mechanics and Geotechnical Engineering, vol. 10, no. 3, pp. 523-533. Feb. 2018. https://doi.org/10.1016/j.jrmge.2017.12.003

E. M. Chan, V. Lee, S. P. Mickan, and P. J. Davies "Low-cost optoelectronic devices to measure velocity of detonation", Proc. SPIE 5649, Smart Structures, Devices, and Systems II, 2005, pp. 586-594. https://doi.org/10.1117/12.582232

V. Bailey, “Characterisation of hydrogen peroxide based explosives and ventilation modelling to quantify re-entry times in underground development blasting,” M. thesis, The University of Queensland, School of Mining and Mechanical Engineering, Australia, 2017.

S. Saran, M. K. Jha, H. Agrawal, and A. K. Mishra, “Influence of density and viscosity of emulsion explosive on its detonation velocity,” Minetech, vol. 42, no. 1, pp. 22-34, Jan-March 2021.

P. Politzer and J. S. Murray, “The role of product composition in determining detonation velocity and detonation pressure,” Central European Journal of Energetic Materials, vol. 11, no. 4, pp. 459-474, 2014.

H. Agrawal and A. K. Mishra, “A study on influence of density and viscosity of emulsion explosive on its detonation velocity,” AMSE Journals-AMSE IIETA, Vol. 78, no. 3, pp. 316-336, 2018.

P. Manullang, M. Arbi, and S. R. Jaka, “Low density optimization of emulsion explosive to improve blasting quality (MNK Max70),” IOP Conf. Ser.: Earth Environ. Sci., 2021, 882 012058, pp. 1-9. https://doi.org/10.1088/1755-1315/882/1/012058

M. K. Jha, B. K. Singh, and H. Agrawal, “Variation of velocity of detonation (VOD) of bulk explosives under unconfined condition due to different diameter of cartridge,” Minetech, vol. 42, no. 1, pp. 51-56, Jan-March 2021.

M. Dobrilović, V. Bohanek, and V. Škrlec, “Increasing measurement accuracy in electro-optical method for measuring velocity of detonation,” Rud.-geol.-naft. zb., vol. 29, pp. 49-55, 2014.

R. N. Jha, M. K. Jha, B. K. Singh, and H. Agrawal, “Influence of ground vibration due to different initiation system – A case study,” Minetech, vol. 42, no. 1, pp. 35-43, Jan-March 2021.

K. Podoliak, “The evolution of detonator,” Dyno Consult, New Leader’s Conference, Dyno Nobel, Apr. 2004. Available at: https://oldcooperriverbridge.org/docs/dyno_nobel_shock_tube.pdf

I. Zawadzka-Małota and T. Sałaciński, “Some remarks on the safety of methane penthrite detonating cords against the inflammability of a methane-air mixture,” Central European Journal of Energetic Materials, vol. 19, no. 2, pp. 181-203, 2022.

https://doi.org/10.22211/cejem/151774

National Institute of Rock Mechanics, "Evaluation of explosives performance through in-the hole detonation velocity measurement," Final Report for S&T Project, Project Code. MT/96/96, NIRM, Kolar Gold Fields, Karnataka, India, Aug. 2001.

D. Tete, A. Y. Deshmunkh and R. R. Yerpude, “Velocity of detonation (VOD) measutement techniques practical approach,” International Journal of Engineering and Technology, vol. 2, no. 3, pp. 259-265, Jun. 2013. https://doi.org/10.14419/ijet.v2i3.1023

K. Nikolczuk, A. Maranda, P. Mertuszka, K. Fuławka, Z. Wilk, and P. Koślik, “Measurements of the VOD of selected mining explosives and novel “green explosives” using the continuous method,” Central European Journal of Energetic Materials, vol. 16, no. 3, pp. 468-481, 2019. https://doi.org/10.22211/cejem/112481

D. Kuhinek, B. Štimac, A. Hanić, and L. Čančar, “Improvement of the method for measuring the shock tubes velocity of detonation by using a CNC machined base and oscilloscopes,” 12th International Conference on Measurement, Smolenice, Slovakia, 2019, pp. 79-82.

https://doi.org/10.23919/MEASUREMENT47340.2019.8780094

J. Quaresma, L. Deimling, J. Campos and R. Mendes, “Active and passive optical fiber metrology for detonation velocity measurements,” Propellants Explos. Pyrotech, vol. 45, no. 6, pp. 921-931, 2020. https://doi.org/10.1002/prep.201900197

S. Žganec, V. Bohanek, and M. Dobrilović, “Influence of a primer on the velocity of detonation of ANFO and heavy ANFO blends,” Central European Journal of Energetic Materials, vol. 13, no. 3, pp. 694-704, 2016.

M. J. Louw, R. S. Sarracino, and S. M. Vather, “A comparison of the theoretical and measured velocities of detonation for selected explosives,” Journal of the Southern African Institute of Mining and Metallurgy, Vol. 93, no. 6, pp.147-153, Jun. 1993.

P. Mertuszka and M. Pytlik, “Analysis and comparison of the continuous detonation velocity measurement method with the standard method,” High Energy Materials, vol. 11, no. 2, pp. 63-72, 2019.

C. A. Zúñiga-Arrobo, C. A. Rojas-Villacís, C. D. Rosero-Padilla, L. G. Fernández-Suárez, and J. P. Idrovo Palomeque, “Velocidad de detonación del explosivo, vibración y ruido en pequeña minería subterránea, Zaruma – Ecuador,” FIGEMPA: Investigación y Desarrollo, Vol. 17, no. 1, pp. 26-42, 2024. https://doi.org/10.29166/revfig.v17i1.4634

A. D. Tete, A. Deshmukh, and R. Yerpude, “Design and implementation of electronic measurement system for velocity of detonation of explosive,” International Journal of Scientific & Engineering Research, Vol. 6, no. 6, pp. 613-617, 2015.

E. Cámara-Zapata, A. Arumi-Casanovas, J. Bonet-Dalmau, M. Bascompta, and L. Sanmiquel, “Arduino-based low-cost device for the measurement of detonation times in blasting caps,” Sensors, Vol. 23, no. 14, pp. 6534, 2023. https://doi.org/10.3390/s23146534

K. H. P. Singh, N. Malhotra, and H. K. Gupta, “FPGA based development of a high-speed digital data recorder for detonation velocity measurement in field applications,” Programmable Device Circuits and Systems, vol. 10, no. 11, pp. 208-214, 2010.

W. Xiaoyan, Z. Hui, W. Jian, and W. Gao, “Design of the fiber detonation velocity measuring system based on the FPGA,” Proc. Int. Conf. on Electronics and Optoelectronics (ICEOE 2011), Dalian, China, 2011, pp. V4-29 – V4-32. https://doi.org/10.1109/ICEOE.2011.6013417

J. Pachmáň, M. Künzel, K. Kubát, J. Šelešovský, R. Maršálek, M. Pospíšil, M. Kubíček, and A. Prokeš, “OPTIMEX: Measurement of detonation velocity with a passive optical fibre system,” Central European Journal of Energetic Materials, vol. 14, no. 1, pp. 233-250, 2017.

Published

2024-12-15

Issue

Section

Signal processing

How to Cite

[1]
S. R. Rossi, R. J. de la Vega, and F. E. Déber, “FPGA-Based System for Velocity of Detonation Measurements on Detonating Cords”, Elektron, vol. 8, no. 2, pp. 54–60, Dec. 2024, doi: 10.37537/rev.elektron.8.2.198.2024.