Diseño de una controladora de vuelo para lograr tolerancia a fallas mejorada

Claudio Pose, Leonardo Garberoglio, Ezequiel Pecker-Marcosig, Ignacio Mas, Juan Giribet

Resumen


En los últimos años, los vehículos aéreos multirotores han ganado popularidad tanto en productos de consumo como en aplicaciones profesionales. La seguridad es una de las principales preocupaciones durante la operación y diferentes enfoques a la tolerancia a fallas se han propuesto y continúan desarrollándose. Para que un sistema de control maneje situaciones fuera de lo nominal, las fallas deben detectarse e identificarse adecuadamente, por lo tanto, se requiere un algoritmo de detección e identificación de fallas. Además, el lazo de control debe modificarse en consecuencia para hacer frente a cada falla de la mejor manera posible. Estos algoritmos generalmente se ejecutan en la computadora de vuelo de bajo nivel del vehículo, lo que le impone una gran carga computacional adicional. En este trabajo se utiliza un módulo de detección e identificación de fallas para evaluar su impacto en términos de tiempo de procesamiento adicional en una computadora de vuelo basada en el microcontrolador Cortex-M3. Si bien se puede ejecutar una versión altamente optimizada del algoritmo, aún sugiere posibles limitaciones de hardware para expandir las capacidades del sistema. La evaluación del mismo módulo en un diseño de computadora de vuelo mejorado basado en un microprocesador Cortex-M7 muestra una huella significativamente reducida en el rendimiento general, lo que permite agregar un método aumentado para una detección de fallas más rápida.

Palabras clave


Flight computer; Unmanned Aerial Vehicles; Fault Tolerance; Fault Detection and Identification

Texto completo:

PDF (English) HTML (English)

Referencias


H. Huang, A. V. Savkin, and C. Huang, “When drones take public transport: Towards low cost and large range parcel delivery*,” in 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), vol. 1, 2019, pp. 1657–1660.

E. D’Amato, M. Mattei, A. Mele, I. Notaro, and V. Scordamaglia, “Fault tolerant low cost IMUS for UAVs,” in 2017 IEEE International Workshop on Measurement and Networking (M N), 2017, pp. 1–6.

A. Marks, J. F. Whidborne, and I. Yamamoto, “Control allocation for fault tolerant control of a VTOL octorotor,” in Proceedings of 2012 UKACC International Conference on Control, 2012, pp. 357–362.

M. Saied, B. Lussier, I. Fantoni, C. Francis, H. Shraim, and G. Sanahuja, “Fault diagnosis and fault-tolerant control strategy for rotor failure in an octorotor,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 5266–5271.

M. Saied, B. Lussier, I. Fantoni, C. Francis, and H. Shraim, “Fault tolerant control for multiple successive failures in an octorotor: Architecture and experiments,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 40–45.

J. I. Giribet, R. S. Sanchez-Pena, and A. S. Ghersin, “Analysis and design of a tilted rotor hexacopter for fault tolerance,” IEEE Transactions on Aerospace and Electronic Systems, vol. 52, no. 4, pp. 1555–1567, 2016.

M. W. Mueller and R. D’Andrea, “Stability and control of a quadrocopter despite the complete loss of one, two, or three propellers,” in 2014 IEEE International Conference on Robotics and Automation (ICRA), 2014, pp. 45–52.

D. Vey and J. Lunze, “Structural reconfigurability analysis of multirotor UAVs after actuator failures,” in 2015 54th IEEE Conference on Decision and Control (CDC), 2015, pp. 5097–5104.

——, “Experimental evaluation of an active fault-tolerant control scheme for multirotor uavs,” in 2016 3rd Conference on Control and Fault-Tolerant Systems (SysTol), 2016, pp. 125–132.

G. M. Mancuso, E. Bini, and G. Pannocchia, “Optimal priority assignment to control tasks,” ACM Trans. Embed. Comput. Syst., vol. 13, no. 5s, Oct. 2014. [Online]. Available: https://doi.org/10.1145/2660496

W. Koch, R. Mancuso, and A. Bestavros, “Neuroflight: Next generation flight control firmware,” arXiv preprint arXiv:1901.06553, 2019.

M. Hofer, M. Muehlebach, and R. D’Andrea, “Application of an approximate model predictive control scheme on an unmanned aerial vehicle,” in 2016 IEEE International Conference on Robotics andAutomation (ICRA), 2016, pp. 2952–2957.

E. Bregu, N. Casamassima, D. Cantoni, L. Mottola, and K. Whitehouse, “Reactive control of autonomous drones,” in Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services, ser. MobiSys ’16. New York, NY, USA: Association for Computing Machinery, 2016, p. 207–219.

E. Pecker-Marcosig, J. I. Giribet, and R. Castro, “Hybrid adaptive control for UAV data collection: A simulation-based design to tradeoff resources between stability and communication,” in 2017 Winter Simulation Conference (WSC), 2017, pp. 1704–1715.

A. Fekih, “Fault diagnosis and fault tolerant control design for aerospace

systems: A bibliographical review,” in 2014 American Control Conference, 2014, pp. 1286–1291.

G. Michieletto, M. Ryll, and A. Franchi, “Control of statically hoverable multi-rotor aerial vehicles and application to rotor-failure robustness for hexarotors,” in 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017, pp. 2747–2752.

J. I. Giribet, C. D. Pose, A. S. Ghersin, and I. Mas, “Experimental validation of a fault tolerant hexacopter with tilted rotors,” International Journal of Electrical and Electronic Engineering and Telecommunications, vol. 7, no. 2, pp. 58–65, 2018.

D. Vey, K. Schenk, and J. Lunze, “Simultaneous control reconfiguration of systems with non-isolable actuator failures,” in 2016 American Control Conference (ACC), 2016, pp. 7541–7548.

D. Wolfram, F. Vogel, and D. Stauder, “Condition monitoring for flight performance estimation of small multirotor unmanned aerial vehicles,” in 2018 IEEE Aerospace Conference, 2018, pp. 1–17.

O. Zandi and J. Poshtan, “Fault diagnosis of brushless dc motors using built-in hall sensors,” IEEE Sensors Journal, vol. 19, no. 18, pp. 8183–8190, 2019.

C. D. Pose, J. I. Giribet, and I. Mas, “Fault tolerance analysis for a class of reconfigurable aerial hexarotor vehicles,” IEEE/ASME Transactions on Mechatronics, vol. 25, no. 4, pp. 1851–1858, 2020.

H. Smeets, M. Ceriotti, and P. J. Marrón, “Adapting recursive sinusoidal software oscillators for low-power fixed-point processors,” ACM Trans. Embed. Comput. Syst., vol. 19, no. 3, May 2020. [Online]. Available: https://doi.org/10.1145/3378559

C. D. Pose, J. I. Giribet, and A. S. Ghersin, “Hexacopter fault tolerant actuator allocation analysis for optimal thrust,” in 2017 International Conference on Unmanned Aircraft Systems (ICUAS), 2017, pp. 663–671.

M. Saied, H. Shraim, C. Francis, I. Fantoni, and B. Lussier, “Actuator fault diagnosis in an octorotor UAV using sliding modes technique: Theory and experimentation,” in 2015 European Control Conference (ECC), 2015, pp. 1639–1644.

F. Chen, R. Jiang, K. Zhang, B. Jiang, and G. Tao, “Robust Backstepping Sliding-Mode Control and Observer-Based Fault Estimation for a Quadrotor UAV,” IEEE Transactions on Industrial Electronics, vol. 63, no. 8, pp. 5044–5056, 2016.

C. D. Pose, A. Giusti, and J. I. Giribet, “Actuator fault detection in a hexacopter using machine learning,” in 2018 Argentine Conference on Automatic Control (AADECA), 2018, pp. 1–6.




DOI: https://doi.org/10.37537/rev.elektron.6.2.162.2022

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia


Copyright (c) 2022 Claudio Pose, Leonardo Garberoglio, Ezequiel Pecker-Marcosig, Ignacio Mas, Juan Giribet

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Revista elektron,  ISSN-L 2525-0159
Facultad de Ingeniería. Universidad de Buenos Aires 
Paseo Colón 850, 3er piso
C1063ACV - Buenos Aires - Argentina
revista.elektron@fi.uba.ar
+54 (11) 528-50889