Control y monitoreo de desempeño de sistemas seguidores solares bajo software embebido

Marco Antonio Peñaloza López, Sergio Palomino Resendiz, Diego Flores Hernández

Resumen


Este trabajo muestra un procedimiento a través del cual es posible reducir la complejidad de diseño, implementación y ajuste de controladores no convencionales para sistemas seguidores solares. Lo anterior a través de la programación de una tarjeta STM32F4-NUCLEO en un lenguaje de alto nivel. Esto es posible gracias al uso de un software embebido (toolbox Waijung) que permite disponer de las funciones y bloques pertenecientes a Matlab-Simulink para la generación y descarga automática de código C en microcontroladores de la familia STM32F4. Adicionalmente, la configuración resultante logra disponer de forma fácil y práctica los recursos de procesamiento de una computadora propiciando un esquema de tipo Hardware in the Loop. Por lo que, la computadora puede visualizarse como una interfaz de monitoreo y configuración, así como un servidor para almacenamiento de base de datos. Para validar la propuesta se presenta el procedimiento de desarrollo y pruebas de funcionamiento realizadas con un seguidor solar existente.

Palabras clave


seguidor solar; Waijung; STM32F4; estrategia de control; interfaz de monitoreo y configuración

Texto completo:

PDF

Referencias


M. Schmela, R. Rossi, C. Lits, S. Kumar Chunduri, A. Shah, R. Muthyal, P. Moghe, S. Kalam, A. Jamkhedkar, S. Goel, P. Saratchandra, “Advancements in solar technology, markets, and investments – A summary of the 2022 ISA World Solar Reports”, Solar Compass, volumen 6, 2023.

S. I. Palomino-Resendiz, “Generación y control de trayectorias para sistemas robóticos de seguimineto solar”, UPIITA – IPN, 2021.

Tsoutsos, T., Frantzeskaki, N., and Gekas, V. Environmental impacts from the solar energy technologies. Energy Policy 33, 3 (2005), 289–296. 8.

Shahariar-Chowdhury, Md., Sajedur-Rahman, K., Chowdhury, T., Nuthammachot, N., Techato, K., Akhtaruzzaman, Md., Kiong-Tiong, S., Sopian, K., Amin, N. An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strategy Reviews 27 (2020).

A.Z. Hafez, A.M. Yousef, N.M. Harag, “Solar tracking systems: Technologies and trackers drive types – A review”, Renewable and Sustainable Energy Reviews, Volumen 91, 2018, pp. 754-782.

Palomino-Resendiz, S. I., Flores-Hernández, D. A., Lozada-Castillo, N., Luviano-Juárez, A. High-Precision Luminosity Sensor for Solar Applications. In IEEE Sensors Journal 19, 24 (2019), IEEE, 12454-12464.

Leñero-Bardallo, J. A., Farian, L., Guerrero-Rodríguez, J. M., Carmona-Galán, R., Rodríguez-Vázquez, Á. Sun Sensor Based on a Luminance Spiking Pixel Array. In IEEE Sensors Journal 17, 20 (2017), IEEE, 6578-6588.

Ruelas, A., Velázquez, N., Villa-Angulo, C., Acuña, A., Rosales, P., Suastegui, J. A solar position sensor based on image vision. Sensors 17, 8 (2017), 1742.

Spencer, J. Fourier series reprensentation of the position of the sun. Search 2, 5 (1971), 172.

Cooper, P. The absorption of radiation in solar stills. Solar energy 12, 3 (1969), 333–346.

M. Angulo Calderón, I. Salgado Tránsito, I. Trejo Zúñiga, C. Paredes Orta, “Development and Accuracy Assessment of a High-Precision Dual-Axis Pre-Commercial Solar Tracker for Concentrating Photovoltaic Modules”, Appl. Sci., 2022.

T. Widyaningrum, A. S. Romadhon and D. Safitri, "Solar Tracking System Dual Axis using Proportional Integral Derivative (PID) Controller," 2023 IEEE 9th Information Technology International Seminar (ITIS), Batu Malang, Indonesia, 2023, pp. 1-5.

Zakariah, J. J. Jamian, M. Amri Md Yunus, "Dual-axis solar tracking system based on fuzzy logic control and Light Dependent Resistors as feedback path elements," 2015 IEEE Student Conference on Research and Development (SCOReD), Kuala Lumpur, Malaysia, 2015, pp. 139-144.

W. Aslam, Y. Xu, A. Siddique, A. Batool, M. N. Aslam, "A Method of Hybrid Solar Tracking Prototype for MPPT," 2019 IEEE Asia Power and Energy Engineering Conference (APEEC), Chengdu, China, 2019, pp. 253-257.

K. S. Vastav, S. Nema, P. Swarnkar, D. Rajesh, "Automatic solar tracking system using DELTA PLC," 2016 International Conference on Electrical Power and Energy Systems (ICEPES), Bhopal, India, 2016, pp. 16-21.

N. M. Isa, Y. M. N. S. Ismail, C. K. Gan, "Design of Single Axis Solar Tracking System (SASTS) Integrated with Programmable Logic Controller," 2021 Innovations in Power and Advanced Computing Technologies (i-PACT), Kuala Lumpur, Malaysia, 2021, pp. 1-6.

T. Mahmood, "Programmable logic controller based design and implementation of multiple axes solar tracking system," 2013 International Conference on Electrical Communication, Computer, Power, and Control Engineering (ICECCPCE), Mosul, Iraq, 2013, pp. 101-106.

H. Fathabadi, "Novel Online Sensorless Dual-Axis Sun Tracker," in IEEE/ASME Transactions on Mechatronics, vol. 22, no. 1, pp. 321-328, Feb. 2017.

W. Jing Min, L. Chia Liang, “Design and Implementation of a Sun Tracker with a Dual-Axis Single Motor for an Optical Sensor-Based Photovoltaic System”, Department of Electrical Engineering, St. John’s University, Taiwan, 2013.

H. Awad, S. Moawad, A. Atalla, "Experimental Comparison Between Microcontrollers and Programmable Logic Controllers in Sun Tracking Applications," 2018 Twentieth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 2018, pp. 58-63.

K. Rao, D. J. Vaghela, M. V. Gojiya, "Implementation of SPWM technique for 3-Φ VSI using STM32F4 discovery board interfaced with MATLAB," 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India, 2016, pp. 1-5.

Waijung Blockset, https://waijung1.aimagin.com//(ultima consulta: 1-5-2024).

Mathworks, Simulink, https://la.mathworks.com/products/simuli nk.html (última consulta: 1-5-2024).

STMicroelectronics, ARM Cortex-M4 High-Performance MCUs, https://www.st.com (última consulta: 1-5-2024).

S. I. Palomino-Resendiz, F. A. Ortiz-Martínez, I. V. Paramo-Ortega, J. M. González-Lira y D. A. Flores-Hernández, "Optimal Selection of the Control Strategy for Dual-Axis Solar Tracking Systems," in IEEE Access, vol. 11, pp. 56561-56573, 2023.

Mathworks, Help Center, Simscape Multibody Link, https://la.mathworks.com/help/smlink/index.html?s_tid=CRUX_lftnav (última consulta: 24-09-2024).

M. A. Peñaloza-López, “Desarrollo e implementación de una estrategia de control no convencional basada en esquemas de optimización para aplicaciones de seguimiento solar”, Instituto Politécnico Nacional, México, 2024.

Kipp & Zonen, https://kippzonen.com (última consulta: 1-5-2024).

Maxim Integrated Products. Precision, High-Side Current-Sense Amplifiers. MAX471 datasheet, 1996.

Krstić, M. (2000). Performance improvement and limitations in extremum seeking control. Systems & Control Letters, 39(5), 313-326.

STM32CubeIDE, https://www.st.com/en/development-tools/stm32cubeide.html (última consulta: 1-5-2024).

Fuentes-Morales, R. F., Diaz-Ponce, A., Peña-Cruz, M. I., Rodrigo, P. M., Valentín-Coronado, L. M., Martell-Chavez, F., & Pineda-Arellano, C. A. (2020). Control algorithms applied to active solar tracking systems: A review. Solar Energy, 212, 203-219.

Kipp & Zonen, https://kippzonen.com (última consulta: 1-5-2024).

Maxim Integrated Products. Precision, High-Side Current-Sense

Amplifiers. MAX471 datasheet, 1996.

Krstić, M. (2000). Performance improvement and limitations in extremum seeking control. Systems & Control Letters, 39(5), 313-326.




DOI: https://doi.org/10.37537/rev.elektron.9.1.199.2025

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia


Copyright (c) 2025 Marco Antonio Peñaloza López

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Revista elektron,  ISSN-L 2525-0159
Facultad de Ingeniería. Universidad de Buenos Aires 
Paseo Colón 850, 3er piso
C1063ACV - Buenos Aires - Argentina
revista.elektron@fi.uba.ar
+54 (11) 528-50889