Study of electric circuit models of bidimensional electromagnetic band-gap metamaterials based on the Yang cell

Authors

  • Federico Luna Facultad de Ingeniería, Universidad de Buenos Aires
  • Silvina Boggi Facultad de Ingeniería, Universidad de Buenos Aires.
  • Walter Gustavo Fano Facultad de Ingeniería, Universidad de Buenos Aires

DOI:

https://doi.org/10.37537/rev.elektron.4.1.96.2020

Keywords:

Metamaterial, EBG, unitary cell, electric circuit, dispersion diagram, microstrip

Abstract

Metamaterials in microwave frequency bands have been widely explored in the development and design of antenna structures and arrays. In this paper, the so-called Yang cell have been studied. When these cells are periodically arranged on a plane, the resulting metamaterial structure shows lower band-gap frequencies than structures composed of other unit cells of the same size. The electric and magnetic fields in the first two modes of electromagnetic propagation in the unit cell have been studied. Four equivalent circuit models of the unit cell have been developed in order to easily and quickly obtain the frequency response of the metamaterial structure. These models are explained in this paper, and were validated using full-wave computational electromagnetic methods.

Downloads

Download data is not yet available.

Author Biographies

  • Federico Luna, Facultad de Ingeniería, Universidad de Buenos Aires
    Ingeniero Electrónico.
  • Silvina Boggi, Facultad de Ingeniería, Universidad de Buenos Aires.

    Máster e Ingeniera Química.

    Docente del Departamento de Matemática de la Facultad de Ingeniería de la Universidad de Buenos Aires.

  • Walter Gustavo Fano, Facultad de Ingeniería, Universidad de Buenos Aires

    Doctor en ingeniería.

    Director del Laboratorio de Radiación Electromagnética del Departamento de Electrónica de la Facultad de Ingeniería de la Universidad de Buenos Aires.

References

C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission line theory and microwave applications. The Engineering Approach. Wiley, 2006.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Techniques, 1999.

N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and engineering explorations. IEEE Press and Wiley-Interscience, 2006.

J. D. Joannopoulos and S. G. Johnson, Photonic Crystals: Molding the flow of light. Princeton University Press, 2008.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett., vol. 65, pp. 3152–3155, Dec 1990.

E. Yablonovitch, T. J. Gmitter, K. M. Leung, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “3-dimensional photonic band structure,” Optical and Quantum Electronics, 1992.

F. Yang and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering. Cambridge University Press, 2009.

D. Sievenpiper, L. Zhang, R. F. Jimenez, N. G. Alexopoulos, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Transactions on Microwave Theory and Techniques, 1999.

T. Liu, X. Cao, J. Ma, and X. Wen, “Enhanced bandwidth uniplanar compact electromagnetic bandgap structure with coplanar meander line inductance,” Electronics Letters, no. 4, 2008.

B.-Q. Lin, X.-Y. Ye, X.-Y. Cao, and F. Li, “Uniplanar EBG structure with improved compact and wideband characteristics,” Electronics Letters, no. 23, 2008.

B. Mohajer-Iravani and O. M. Ramahi, “On the suppression band and bandgap of planar electromagnetic bandgap structures,” Hindawi Publishing Corporation: International Journal of Antennas and Propagation, 2014.

F.-R. Yang, K.-P. Ma, Y. Qian, and T. Itoh, “A uniplanar contact photonic band-gap (uc-pbg) structure and its applications for microwave circuits,” IEEE Transactions on Microwave Theory and Techniques, 1999.

L. Brillouin, Wave Propagation in Periodic Structures: Electric Filters adn Crystal Lattices. Dover Publications, 1953.

P. Kovács, “Design and optimization of electromagnetic bandgap structures (phd thesis),” Brno University of Technology, 2010.

G. Goussetis, A. Feresidis, and J. C. Vardaxoglou, “Tayloring the amc and ebg characteristics of periodic metallic arrays printed on grounded dielectric substrate,” IEEE Transactions on Antennas and

Propagation, 2006.

M. Rahman and M. A. Stuchly, “Transmission line - periodic circuit representation of planar microwave photonic bandgap structures,” Microwave and optical technology letters, 2001.

J. D. Baena and J. Bonache, “Equivalent-circuit models for splitring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Transactions on microwave theory and techniques, 2005.

B. Mohajer-Iravani and O. M. Ramahi, “Wideband circuit model for planar ebg structures,” IEEE Transactions on advanced packaging, 2010.

J.-H. Kim and M. Swaminathan, “Modeling of irregular shaped power distribution planes using transmission matrix method,” IEEE Transactions on advanced packaging, 2001.

F. Luna, “Tesis de ingenierı́a electrónica: Estudio de bandas de estructura electromagnética (ebg) para la reducción del acoplamiento mutuo entre antenas microstrip,” Facultad de Ingenierı́a UBA., Dec 2018.

D. M. Pozar, Microwave Engineering. Wiley, 2011.

K. H. Kim and J. E. Schutt-Ainé, “Analysis and modeling of hybrid planar-type electromagnetic-bandgap structures and feasibility study on power distribution network applications,” IEEE Transactions on Microwave Theory and Techniques, 2008.

C. Paul, Inductance: Loop and Partial. Wiley, 2010. [24] M. F. Luberto, “Diseño de una antena de microcintas para WIFI empleando estructuras EBG (electromagnetic band gap),” Tesis de grado. Facultad de Ingenierı́a, Universidad de Buenos Aires, 2016.

Published

2020-04-25

Issue

Section

Telecommunications and Aerospace Industry and Systems