Arquitectura de comunicación para la digitalización de la agricultura en torno a la maquinaria agrícola

Autores/as

  • Natalia Iglesias Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario
  • Pilar Bulacio Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario
  • Elizabeth Tapia Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario

DOI:

https://doi.org/10.37537/rev.elektron.4.2.105.2020

Palabras clave:

LoRa, agricultura digital, monitoreo

Resumen

Se presenta una arquitectura de comunicación para habilitar servicios en la nube en torno a la maquinaria agrícola en zonas rurales con infraestructura de conectividad limitada. La arquitectura propuesta se compone de tres módulos, Unidad a bordo, gateway y servicio en la nube, que extienden el alcance de la cobertura de comunicación y permiten el intercambio de datos desde la maquinaria agrícola a la nube. La arquitectura se implementa con hardware de bajo costo y librerías de código abierto que permiten una rápida implementación. Los resultados obtenidos, en términos de latencia de comunicación, indican que la solución es adecuada para aplicaciones de monitoreo en maquinarias agrícola que utilizan ISOBUS.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

CEMA, “Digital farming: What does it really mean?” Feb. 2017, (Accedido Septiembre 2020). [Online]. Available: https://www.cema-agri.org/images/publications/position-papers/CEMA Digital Farming -Agriculture 4.0 13 02 2017 0.pdf

A. Villa-Henriksen, G. T. Edwards, L. A. Pesonen, O. Green, and C. A. G. Sorensen, “Internet of things in arable farming: Implementation, applications, challenges and potential,” Biosystems Engineering, vol. 191, pp. 60 – 84, 2020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1537511020300039

B. Basso and J. Antle, “Digital agriculture to design sustainable agricultural systems,” Nature Sustainability, vol. 3, pp. 254 – 256, apr 2020.

E. C. for Latin America and the Caribbean (ECLAC), “Data, algorithms and policies: redefning the digital world (lc/cmsi.6/4),” 2018. [Online]. Available: https://repositorio.cepal.org/bitstream/handle/11362/43515/7/S1800052 en.pdf

S. V. Nikola M. Trendov and M. Zeng, “Digital technologies in agriculture and rural areas. briefing paper,” 2019. [Online]. Available: http://www.fao.org/3/ca4887en/ca4887en.pdf

I. del Portillo, B. G. Cameron, and E. F. Crawley, “A technical comparison of three low earth orbit satellite constellation systems to provide global broadband,” Acta Astronautica, vol. 159, pp. 123 – 135, 2019. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0094576518320368

S. D. Ilcev, Global Mobile Satellite Communications Theory: For Maritime, Land and Aeronautical Applications, 2nd ed. Springer Publishing Company, Incorporated, 2016.

LoRaAlliance, “Agricultural applications.” [Online]. Available: https: //lora-alliance.org/lorawan-vertical-markets/agriculture/

Sigfox, online. Accessed: 16 Nov 2020. [Online]. Available: https://www.sigfox.com

Semtech, “What is lora?” (Accedido Septiembre 2020). [Online]. Available: https://www.semtech.com/lora/what-is-lora

K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “A comparative study of lpwan technologies for large-scale iot deployment,” ICT Express, vol. 5, no. 1, pp. 1 – 7, 2019. [Online]. Available: http:/ www.sciencedirect.com/science/article/pii/S2405959517302953

B. Foubert and N. Mitton, “Long-range wireless radio technologies: A survey,” Future Internet, vol. 12, p. 13, 01 2020.

I. Lysogor, L. Voskov, A. Rolich, and S. Efremov, “Study of data transfer in a heterogeneous lora-satellite network for the internet of remote things,” Sensors, vol. 19, no. 15, 2019. [Online]. Available: https://www.mdpi.com/1424-8220/19/15/3384

M. Palattella and N. Accettura, “Enabling internet of everything everywhere: Lpwan with satellite backhaul,” 2018 Global Information Infrastructure and Networking Symposium (GIIS), pp. 1–5, 2018.

ISO, “Iso11783 (all parts), tractors and machinery for agriculture and forestry — serial control and communications data network,” 2019.

J. Backman, R. Linkolehto, M. Koistinen, J. Nikander, A. Ronkainen, J. Kaivosoja, P. Suomi, and L. Pesonen, “Cropinfra research data collection platform for iso 11783 compatible and retrofit farm equipment,” Computers and Electronics in Agriculture, vol. 166, p. 105008, 2019. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0168169918317381

AEF, “Agricultural industry electronics foundation,” 2020, online. Accessed: 30 Jun 2020. [Online]. Available: http://aef-online.org/

E. G. Petrakis, S. Sotiriadis, T. Soultanopoulos, P. T. Renta, R. Buyya, and N. Bessis, “Internet of things as a service (itaas): Challenges and solutions for management of sensor data on the cloud and the fog,” Internet of Things, vol. 3-4, pp. 156 – 174, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S2542660518300350

C. Bormann, M. Ersue, and A. Keränen, “Terminology for Constrained-Node Networks,” RFC 7228, May 2014. [Online]. Available: https://rfc-editor.org/rfc/rfc7228.txt

Elecrow, “Can-bus shieldv1.4.” [Online]. Available: https://www.elecrow.com/canbus-shield-p-1133.html

H. RF, “Rfm95/96/97/98(w) - low power long range transceiver module,” 2014.

IBM, “Library: Lorawan mac on embedded systems.” [Online]. Available: https://github.com/mcci-catena/ibm-lmic/

LoRa-Alliance, “Lorawan 1.0.3 specification,” 2018.

——, “Rp002-1.0.1 lorawan regional parameters,” February 2020, status: Final.

Dragino, “Raspberry pi hat featuring gps and lora technology.” [Online]. Available: https://www.dragino.com/products/lora/item/106-lora-gps-hat.html

T. Bray, “The JavaScript Object Notation (JSON) Data Interchange Format,” RFC 7159, Mar. 2014. [Online]. Available: https://rfc-editor.org/rfc/rfc7159.txt

“User datagram protocol,” RFC 768, Aug. 1980. [Online]. Available: https://rfc-editor.org/rfc/rfc768.txt

OASIS, “Message queuing telemetry transport,” 2019, online. Accessed: 30 Jun 2020. [Online]. Available: http://mqtt.org/

“Transmission Control Protocol,” RFC 793, Sep. 1981. [Online]. Available: https://rfc-editor.org/rfc/rfc793.txt

Semtech, “Lora network packet forwarder.” [Online]. Available: https://github.com/lora-net/packet forwarder

ChirpStack, “Gateway bridge: abstracts packet forwarder protocols into protobuf or json over mqtt.” [Online]. Available: https://github.com/brocaar/chirpstack-gateway-bridge

Eclipse, “Eclipse mosquitto - an open source mqtt broker.” [Online]. Available: https://mosquitto.org/

O. Foundation, “Node-red,” online. Accessed: Sept 2020. [Online]. Available: https://nodered.org/

Semtech, “Sx1276/77/78/79 137 mhz to 1020 mhz low power long range transceiver,” 2019.

——, “An1200.22. lora modulation basics.”

N. Abramson, “The aloha system: another alternative for computer communications,” in Proceedings of the November 17-19, 1970, fall joint computer conference, 1970, pp. 281–285.

Descargas

Publicado

2020-12-14

Número

Sección

Redes de Computadoras e Informática

Cómo citar

[1]
N. Iglesias, P. Bulacio, and E. Tapia, “Arquitectura de comunicación para la digitalización de la agricultura en torno a la maquinaria agrícola”, Elektron, vol. 4, no. 2, pp. 93–99, Dec. 2020, doi: 10.37537/rev.elektron.4.2.105.2020.