Medición de desplazamientos nanométricos en polímeros piezoeléctricos usando método de descomposición en modos empíricos bivariados en patrones de speckle

Pablo Etchepareborda, Francisco Veiras, Arturo Bianchetti, Alejandro Federico, Martin German Gonzalez

Resumen


En este trabajo se presenta un método óptico para la determinación directa del coeficiente piezoeléctrico de películas delgadas de material polimérico. Esto se logra a través de la medición de desplazamientos mecánicos nanométricos generados en el film cuando es excitado con señales eléctricas armónicas de baja frecuencia (0.5 Hz). El sistema está basado en la inteferometría temporal de patrones de speckle y en la recuperación de fase por descomposición en modos empíricos bivariada. El esquema experimental fue usado sobre una muestra de polifluoruro de vinilideno depositada sobre un substrato de vidrio que presenta condiciones de contorno similares a las que se encuentran en experiencias de caracterización de fluídos complejos por técnicas fotoacústicas. El valor medido concuerda con aquellos obtenidos por otros métodos y con el reportado por el fabricante.

Palabras clave


speckle; descomposición de modos empíricos bivariados; polímero piezoeléctrico

Texto completo:

PDF HTML

Referencias


K. S. Ramadan, D. Sameoto, and S. Evoy, “A review of piezoelectric polymers as functional materials for electromechanical transducers,” Smart Materials and Structures, vol. 23, p. 033001, 2014.

L. C. Brazzano, P. Sorichetti, G. Santiago, and M. González, “Broadband dielectric characterization of piezoelectric poly (vinylidene fluoride) thin films between 278 k and 308 k,” Polymer Testing, vol. 32, pp. 1186–1191, 2013.

Y. Shen, N. Xi, K. W. Lai, and W. J. Li, “A novel pvdf microforce/force rate sensor for practical applications in micromanipulation,” Sensor Rev., vol. 24, pp. 274–283, 2004.

A. F. Vidal, L. C. Brazzano, C. Matteo, P. Sorichetti, and M. G. González, “Parametric modeling of wideband piezoelectric polymer sensors: design for optoacoustic applications,” Rev. Sci. Instrum., vol. 88, p. 095004, 2017.

X. Cao, J. Ma, X. Shi, and Z. Ren, “Effect of tio 2 nanoparticle size on the performance of pvdf membrane,” Appl. Surf. Sci., vol. 253, pp. 2003–2010, 2006.

J. S. Dodds, F. N. Meyers, and K. J. Loh, “Piezoelectric characterization of pvdf-trfe thin films enhanced with zno nanoparticles,” IEEE Sens. J., vol. 12, pp. 1889–1890, 2012.

L. M. Riobo, F. E. Veiras, M. G. Gonzalez, M. T. Garea, and P. A. Sorichetti, “High-speed real-time heterodyne interferometry using software-defined radio,” Appl. Opt., vol. 57, pp. 217–224, 2018.

M. Gonzalez, P. Sorichetti, L. C. Brazzano, and G. Santiago, “Electromechanical characterization of piezoelectric polymer thin films in a broad frequency range,” Polymer Testing, vol. 37, pp. 163–169, 2014.

V. Rathod, D. R. Mahapatra, A. Jain, and A. Gayathri, “Characterization of a large-area pvdf thin film for electro-mechanical and ultrasonic sensing applications,” Sensor. Actuat. A-Phys., vol. 163, pp. 164–171, 2010.

M. G. Gonzalez, E. Acosta, and G. D. Santiago, “Determination of the thermal boundary conductance of gold nanoparticles in aqueous solution using a method based on nanobubble generation,” Appl. Opt., vol. 57, pp. 6229–6232, 2018.

L. Cusato, M. Estevez, M. G. Gonzalez, and G. D. Santiago, “Caracterización de lı́quidos por técnica fotoacústica: Estudio de sensores piezoeléctricos de banda ancha,” Elektron, vol. 1, pp. 8–15, 2017.

E. Acosta, M. G. Gonzalez, P. A. Sorichetti, and G. D. Santiago, “Laser-induced bubble generation on a gold nanoparticle: A nonsymmetrical description,” Phys. Rev. E, vol. 92, p. 062301, 2015.

M. G. Gonzalez, X. Liu, R. Niessner, and C. Haisch, “Lead ion detection in turbid media by pulsed photoacoustic spectrometry based on dissolution of gold nanoparticles,” Sensors and Actuators B: Chemical, vol. 150, pp. 770–773, 2010.

L. Seminara, M. Capurro, P. Cirillo, G. Cannata, and M. Valle, “Phase measurement in temporal speckle pattern interferometry using the fourier transform method with and without a temporal carrier,” Opt. Comm., vol. 217, pp. 141–149, 2003.

Y. Fu, C. J. Tay, C. Quan, and H. Miao, “Wavelet analysis of speckle patterns with a temporal carrier,” Applied optics, vol. 44, no. 6, pp. 959–965, 2005.

A. Federico and G. H. Kaufmann, “Robust phase recovery in temporal speckle pattern interferometry using a 3d directional wavelet transform,” Optics letters, vol. 34, no. 15, pp. 2336–2338, 2009.

G. Rilling, P. Flandrin, P. Gonalves, and J. Lilly, “Bivariate empirical mode decomposition,” IEEE Signal Process. Lett., vol. 14, pp. 936–939, 2007.

P. Etchepareborda, A. Bianchetti, A. L. Vadnjal, A. Federico, and G. H. Kaufmann, “Simplified phase-recovery method in temporal speckle pattern interferometry,” Applied optics, vol. 53, no. 30, pp. 7120–7128, 2014.

P. Etchepareborda, A. Bianchetti, F. E. Veiras, A. L. Vadnjal, A. Federico, and G. H. Kaufmann, “Comparison of real-time phase-reconstruction methods in temporal speckle-pattern interferometry,” Applied optics, vol. 54, no. 25, pp. 7663–7672, 2015.

P. Etchepareborda, “Investigación e implementación de técnicas de procesamiento de señales e imágenes para la inspección óptica de microsistemas,” Ph.D. dissertation, Univ. de Buenos Aires, Buenos Aires, Argentina, 2016.

M. Gonzalez, P. Sorichetti, and G. Santiago, “Reducing the capacitance of piezoelectric film sensors,” Rev. Sci. Instrum., vol. 87, p. 045003, 2016.

A. Bianchetti, F. E. Veiras, P. Etchepareborda, A. L. Vadnjal, A. Federico, and G. H. Kaufmann, “Amplitude and phase retrieval in simultaneous π/2 phase-shifting heterodyne interferometry using the synchrosqueezing transform,” Applied optics, vol. 54, no. 8, pp. 2132–2140, 2015.




DOI: https://doi.org/10.37537/rev.elektron.3.1.76.2019

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia


Copyright (c) 2019 Pablo Etchepareborda

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Revista elektron,  ISSN-L 2525-0159
Facultad de Ingeniería. Universidad de Buenos Aires 
Paseo Colón 850, 3er piso
C1063ACV - Buenos Aires - Argentina
revista.elektron@fi.uba.ar
+54 (11) 528-50889