Estimación de Sincrofasores en Redes Eléctricas Inteligentes: de Modelos a Restricciones de Diseño

Francisco Javier Messina, Leonardo Rey Vega, Cecilia Gabriela Galarza

Resumen


Presentamos en primer lugar una reseña de dos populares clases de métodos de estimación de sincrofasores. Ellas son la clase de métodos basados en la transformada de Fourier discreta (DFT) y la transformada de Taylor-Fourier (TFT), que surgen de un modelo de fasor constante y polinómico, respectivamente. Se exponen las limitaciones de estos métodos, que surgen por los propios modelos asumidos, lo cual los hace poco apropiados en situaciones donde el fasor no puede representarse en términos tan simples. Este problema puede resolverse con los estimadores basados en optimización convexa semi-infinita (CSIP), un enfoque novedoso que también es descripto. En particular, enfatizamos las restricciones asociadas con las situaciones más críticas para los métodos basados en modelos, mostrando cómo controlar precisamente el desempeño de los estimadores en dichos casos. Finalmente, mostramos que los estimadores DFT y TFT son instancias particulares del estimador CSIP, de modo existe una conexión entre estos dos enfoques aparentemente diferentes. Esto abre la puerta para futuros análisis y desarrollos.


Palabras clave


PMUs; DFT; TFT; CSIP

Texto completo:

PDF HTML

Referencias


G. Giannakis, V. Kekatos, N. Gatsis, S.-J. Kim, H. Zhu, and B. Wollenberg, “Monitoring and Optimization for Power Grids: A Signal Processing Perspective,” IEEE Signal Process. Mag, vol. 30, no. 5, pp. 107–128, Sept. 2013.

F. Aminifar, M. Fotuhi-Firuzabad, A. Safdarian, A. Davoudi, and M. Shahidehpour, “Synchrophasor measurement technology in power systems: Panorama and state-of-the-art,” IEEE Access, vol. 2, pp. 1607–1628, 2014.

J. D. L. Ree, V. Centeno, J. S. Thorp, and A. G. Phadke, “Synchronized phasor measurement applications in power systems,” IEEE Transactions on Smart Grid, vol. 1, no. 1, pp. 20–27, June 2010.

IEEE Standard for Synchrophasor Measurements for Power Systems, IEEE Std. C37.118.1-2011 (Revision of IEEE Std C37.118-2005), Dec. 2011.

IEEE Standard for Synchrophasor Measurements for Power Systems –Amendment 1: Modification of Selected Performance Requirements,IEEE Std. C37.118.1a-2014 (Amendment to IEEE Std C37.118.1-2011), Apr. 2014.

P. Castello, M. Lixia, C. Muscas, and P. Pegoraro, “Impact of the Model on the Accuracy of Synchrophasor Measurement,” IEEE Trans.Instrum. Meas., vol. 61, no. 8, pp. 2179–2188, Aug. 2012.

G. Barchi, D. Macii, and D. Petri, “Synchrophasor estimators accuracy:A comparative analysis,” IEEE Trans. Instrum. Meas., vol. 62, no. 5, pp. 963–973, May 2013.

G. Barchi, D. Macii, D. Belega, and D. Petri, “Performance of synchrophasor estimators in transient conditions: A comparative analysis,” IEEE Trans. Instrum. Meas., vol. 62, no. 9, pp. 2410–2418, Sept 2013.

M. Karimi-Ghartemani and H. Karimi, “Processing of symmetrical components in time-domain,” IEEE Trans. Power Syst., vol. 22, no. 2, pp. 572–579, May 2007.

J. Grainger and W. Stevenson, Power System Analysis. McGraw-Hill, 1994.

F. Messina, P. Marchi, L. Rey Vega, C. G. Galarza, and H. Laiz, “A Novel Modular Positive-Sequence Synchrophasor Estimation Algorithm for PMUs,” IEEE Transactions on Instrumentation and Measurement, vol. 66, no. 6, pp. 1164–1175, June 2017.

A. Phadke and J. Thorp, Synchronized Phasor Measurements and Their Applications, ser. Power Electronics and Power Systems. Springer US, 2008.

S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1993.

G. Turin, “An introduction to matched filters,” IRE Transactions on Information Theory, vol. 6, no. 3, pp. 311–329, June 1960.

A. Oppenheim and R. Schafer, Discrete-Time Signal Processing, ser Prentice-Hall signal processing series. Pearson Education, 2011.

D. Macii, D. Petri, and A. Zorat, “Accuracy of dft-based synchrophasor estimators at off-nominal frequencies,” in 2011 IEEE International Workshop on Applied Measurements for Power Systems (AMPS), Sept 2011, pp. 19–24.

G. Andria, M. Savino, and A. Trotta, “Windows and interpolation algorithms to improve electrical measurement accuracy,” IEEE Transactions on Instrumentation and Measurement, vol. 38, no. 4, pp. 856–863, Aug 1989.

C. Offelli and D. Petri, “The influence of windowing on the accuracy of multifrequency signal parameter estimation,” IEEE Transactions on Instrumentation and Measurement, vol. 41, no. 2, pp. 256–261, Apr 1992.

P. Stoica and R. Moses, Spectral Analysis of Signals. Pearson Prentice Hall, 2005.

D. Macii, D. Petri, and A. Zorat, “Accuracy Analysis and Enhancement of DFT-Based Synchrophasor Estimators in Off-Nominal Conditions,” IEEE Trans. Instrum. Meas., vol. 61, no. 10, pp. 2653– 2664, Oct. 2012.

D. Belega and D. Petri, “Accuracy Analysis of the Multicycle Synchrophasor Estimator Provided by the Interpolated DFT Algorithm,” IEEE Trans. Instrum. Meas., vol. 62, no. 5, pp. 942–953, May 2013.

D. Belega, D. Dallet, and D. Petri, “Statistical description of the sinewave frequency estimator provided by the interpolated dft method,” Measurement, vol. 45, no. 1, pp. 109 – 117, 2012.

J. A. de la O Serna, “Dynamic Phasor Estimates for Power System Oscillations,” IEEE Trans. Instrum. Meas., vol. 56, no. 5, pp. 1648–1657, Oct. 2007.

M. A. Platas-Garza and J. A. de la O Serna, “Dynamic Phasor and Frequency Estimates Through Maximally Flat Differentiators,” IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 7, pp. 1803–1811, July 2010.

D. Petri, D. Fontanelli, and D. Macii, “A frequency-domain algorithm for dynamic synchrophasor and frequency estimation,” IEEE Trans. Instrum. Meas., vol. 63, no. 10, pp. 2330–2340, Oct. 2014.

F. Messina, L. Rey Vega, P. Marchi, and C. G. Galarza, “Optimal Differentiator Filter Banks for PMUs and their Feasibility Limits,” IEEE Transactions on Instrumentation and Measurement, 2017, en prensa.

D. Belega, D. Fontanelli, and D. Petri, “Dynamic phasor and frequency measurements by an improved taylor weighted least squares algorithm,” IEEE Transactions on Instrumentation and Measurement, vol. 64, no. 8, pp. 2165–2178, Aug 2015.

J. A. de la O Serna, “Synchrophasor measurement with polynomial phase-locked-loop taylor-fourier filters,” IEEE Transactions on Instrumentation and Measurement, vol. 64, no. 2, pp. 328–337, Feb 2015.

M. A. Platas-Garza and J. A. de la O Serna, “Dynamic harmonic analysis through taylor-fourier transform,” IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 3, pp. 804–813, March 2011.

——, “Polynomial implementation of the taylor-fourier transform for harmonic analysis,” IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 12, pp. 2846–2854, Dec 2014.

A. Jerri, The Gibbs Phenomenon in Fourier Analysis, Splines and Wavelet Approximations, ser. Mathematics and

Its Applications. Springer US, 1998.

D. Macii, G. Barchi, and D. Petri, “Design criteria of digital filters for synchrophasor estimation,” in 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), May 2013, pp. 1579–1584.

A. J. Roscoe, B. Dickerson, and K. E. Martin, “Filter design masks for c37.118.1a-compliant frequency-tracking and fixed-filter m-class phasor measurement units,” IEEE Trans. Instrum. Meas., vol. 64, no. 8, pp. 2096–2107, Aug 2015.

F. Messina, P. Marchi, L. Rey Vega, and C. G. Galarza, “Design of Synchrophasor Estimation Systems with Convex Semi-Infinite Programming,” in Electrical Power and Energy Conference (EPEC), Ottawa, Canada, Oct. 2016.

A.W. Potchinkov, “Design of optimal linear phase fir filters by a semiinfinite programming technique,” Signal Processing, vol. 58, no. 2, pp. 165–180, 1997.

R. Reemtsen and J. R¨uckmann, Semi-Infinite Programming, ser. Nonconvex Optimization and Its Applications. Springer US, 1998.

S. Boyd and L. Vandenberghe, Convex Optimization, ser. Berichte uber verteilte messysteme. Cambridge University Press, 2004.

MATLAB, Optimization Toolbox. Natick, Massachusetts: The Math-Works Inc., 2016.

“Semi-infinite programming solvers: CSIP and SIPS,” http://www.norg.uminho.pt/aivaz/software.html.




DOI: https://doi.org/10.37537/rev.elektron.1.2.26.2017

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia


Copyright (c) 2017 Francisco Javier Messina, Leonardo Rey Vega, Cecilia Gabriela Galarza

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Revista elektron,  ISSN-L 2525-0159
Departamento de Electrónica, Facultad de Ingeniería. Universidad de Buenos Aires 
Paseo Colón 850, 1er piso
C1063ACV - Buenos Aires - Argentina
revista.elektron@fi.uba.ar
+54 (11) 5285 0705 / 5285 0704