Análisis de desempeño de una herramienta de simulación de un radar sobre horizonte por onda de cielo
Resumen
Palabras clave
Referencias
G. A. Fabrizio Introduction in High frequency over-the-horizon radar, 1st ed., New York, USA, McGraw Hill, 2013.
M. Feng et al. “Research on a simulation model of a skywave over-the-horizon radar sea echo spectrum,” Remote Sens., vol.14, no 6, pp. 1461, 2022, doi:10.3390/rs14061461.
W. Sun, M. Ji, W. Huang, Y. Ji and Y. Dai., “Vessel tracking using bistatic compact HFSWR,” Remote Sens., vol. 12, pp .1266, 2020, doi: 10.3390/rs12081266.
M.A. Cervera, D. B. Francis and G. J. Frazer, “Climatological model of over-the-horizon radar,” Radio Science, vol. 53, pp. 988–1001, 2018, doi: 10.1029/2018RS006607.
Y. Zhu, Y. Wei and Y. Li, “First order sea clutter cross section for hf hybrid sky-surface wave radar,” Radioengineering, vol. 23, no.4, pp. 1180-1191, 2014.
C. Hou, Y. Wang, and J. Chen, “Estimating target heights based on the earth curvature model and micromultipath effect in skywave OTH radar,” Journal of Applied Mathematics, vol. 2014, Article ID 424191, pp. 1-14, 2014, doi: 10.1155/2014/424191.
D. Bilitza et al. “The international reference ionosphere 2012 - a model of international collaboration,” Journal of Space Weather and Space Climate, vol. 4, pp. 1–12, 2014, doi: 10.1051/swsc/2014004.
T. A. Croft and H. Hoogansian, “Exact ray calculations in a quasi-parabolic ionosphere with no magnetic field,” Radio Science, vol. 3, no.1, 1968, doi: 10.1002/rds19683169.
Z. Saavedra, D. Zimmerman, M. A. Cabrera and A. G. Elias “Sky-wave over-the-horizon radar simulation tool,” IET Radar Sonar Navig., vol. 14, pp. 1773-1777, 2020, doi: 10.1049/ietrsn.2020.0158.
Z. Saavedra, “Modelado del canal de propagación de un radar sobre horizonte,” Ph.D. thesis, Dept. Electric., Electron. and Compu. Tucumán Nacional Univ., Tucumán, Argentina, 2020, https://www.facet.unt.edu.ar/posgrado/wpcontent/uploads/sites/54/2022/11/Tesis_ZSaavedra_2020.pdf.
R. H. Khan, “Ocean-clutter model for high frequency radar,” IEEE J. Ocean Eng., vol. 16, no. 2, pp. 181–188, 1991, doi: 10.1109/48.84134.
I. Mostafanezhad, O. Boric-Lubecke, V. Lubecke and D. P. Mandic, “Application of empirical mode decomposition in removing fidgeting interference in doppler radar life signs monitoring devices In Annu.," Int. Conf. IEEE Eng. Med. Bio. Soc., Minneapolis, USA, 2009, pp. 340-343, doi: 10.1109/IEMBS.2009.5333206.
N. J. Mohamed, “Nonsinusoidal radar signal design for stealth targets,” In IEEE Transactions on Electromagnetic Compatibility, vol. 37, no. 2, pp. 268-277, 1995, doi: 10.1109/15.385893.
M. A. Cabrera et al., “Some considerations for different time-domain signal processing of pulse compression radar,” Annals of Geophysics, vol. 53, pp. 5-6, 2010, doi: 10.4401/ag-4758.
A. V. Oppenheim and R. W. Schafer Filter design Techniques In Discrete-time signal processing, 2nd ed., New Jersey, USA, Prentice Hall, 1998.
K. Don, “How to create and manipulate radar range–doppler plots,” Def. Sci. Tech. Org., Australia, Tech. Rep. DSTO-TN-1386, Dec. 2014.
W. Wang, R. Wang, R. Jiang, H. Yang and X Wang, “Modified reference window for two dimensional CFAR in radar target detection,” The Journal of Engineering, 2019, doi: 10.1049/joe.2019.0687.
M. A. G. Al-Sadoon et al., “A new low complexity angle of arrival algorithm for 1D and 2D direction estimation in MIMO smart antenna,” Systems Sensors, vol. 17, 2017, doi: 10.3390/s17112631
DOI: https://doi.org/10.37537/rev.elektron.8.2.193.2024
Enlaces de Referencia
- Por el momento, no existen enlaces de referencia
Copyright (c) 2024 Zenon Saavedra, Adrian Llanes, Gonzalo Alderete Hero, Julian Di Venanzio, Ana Geogina Elias
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Revista elektron, ISSN-L 2525-0159
Facultad de Ingeniería. Universidad de Buenos Aires
Paseo Colón 850, 3er piso
C1063ACV - Buenos Aires - Argentina
revista.elektron@fi.uba.ar
+54 (11) 528-50889