Control coordinado de vehículos aéreos y acuáticos para relevamiento batimétrico en aguas poco profundas

Leonardo Garberoglio, Patricio Moreno, Ignacio Mas, Juan Giribet

Resumen


Las aplicaciones con pequeños vehículos no tripulados han crecido notablemente en los últimos años. Junto a ello, el interés y la necesidad de realizar tareas utilizando varios de estos vehículos fue cobrando relevancia. En este trabajo se presenta el uso de una formación basada en la técnica de control en el espacio del cluster entre un vehículo no tripulado de superficie y uno aéreo, con el objetivo de realizar monitoreo de cuencas fluviales. La diferente percepción del entorno que cada vehículo posee y la capacidad de transportar diferentes sensores son características fundamentales para este tipo de aplicación. Se presentan resultados tanto en entorno de simulación como en una aplicación real con vehículos no tripulados pertenecientes a los grupos de investigación.

Palabras clave


Control en el espacio del Cluster; Robótica Móvil; Vehículo Autónomo Aéreo; Vehículo autónomo de superficie

Texto completo:

PDF HTML

Referencias


M. Dunbabin, A. Grinham, and J. Udy, “An autonomous surface vehicle for water quality monitoring,” in Australasian Conference on Robotics and Automation (ACRA 2009), S. Scheding, Ed. Sydney, Australia: Australian Robotics and Automation Association, 2009, pp. 1–6.

S. Bhattacharya, H. Heidarsson, G. Sukhatme, and V. Kumar, “Cooperative control of autonomous surface vehicles for oil skimming and cleanup,” in Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011, pp. 2374–2379.

J. Melo and A. Matos, “Guidance and control of an asv in auv tracking operations,” in OCEANS 2008. IEEE, 2008, pp. 1–7.

P. Kimball, J. Bailey, S. Das, R. Geyer, T. Harrison, C. Kunz, K. Manganini, K. Mankoff, K. Samuelson, T. Sayre-McCord et al., “The whoi jetyak: An autonomous surface vehicle for oceanographic research in shallow or dangerous waters,” in 2014 IEEE/OES Autonomous Underwater Vehicles (AUV). IEEE, 2014, pp. 1–7.

L. Garberoglio, P. Moreno, I. Mas, and J. I. Giribet, “Autonomous vehicles for outdoor multidomain mapping,” in 2018 IEEE Biennial Congress of Argentina (ARGENCON), June 2018, pp. 1–8.

G. G. Acosta, B. Menna, R. de La Vega, L. Arrien, H. Curti, S. Villar, R. Leegstra, M. D. Paula, I. Carlucho, F. Solari, and A. Rozenfeld, “MACABOT: prototipo de vehiculo autonomo de superficie (ASV),” in XI Jornadas Argentinas de Robotica, Nov. 2017.

A. Mancini, E. Frontoni, P. Zingaretti, and S. Longhi, “High-resolution mapping of river and estuary areas by using unmanned aerial and surface platforms,” in 2015 International Conference on Unmanned Aircraft Systems (ICUAS), June 2015, pp. 534–542.

T. Marques, K. Lima, M. Ribeiro, A. S. Ferreira, J. B. Sousa, and R. Mendes, “Characterization of highly dynamic coastal environments, employing teams of heterogeneous vehicles: A holistic case study,” in 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO), May 2018, pp. 1–8.

D. Pedrosa, A. Dias, A. Martins, J. Almeida, and E. Silva, “Control-law for oil spill mitigation with an autonomous surface vehicle,” in 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO), May 2018, pp. 1–6.

X. Xiao, J. Dufek, T. Woodbury, and R. Murphy, “Uav assisted usv visual navigation for marine mass casualty incident response,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017, pp. 6105–6110.

Z. Wang and D. Gu, “A local sensor based leader-follower flocking system,” in 2008 IEEE International Conference on Robotics and Automation. IEEE, 2008, pp. 3790–3795.

R. Fierro, A. Das, J. Spletzer, J. Esposito, V. Kumar, J. P. Ostrowski, G. Pappas, C. J. Taylor, Y. Hur, R. Alur et al., “A framework and architecture for multi-robot coordination,” The International Journal of Robotics Research, vol. 21, no. 10-11, pp. 977–995, 2002.

B. Smith, A. Howard, J.-M. McNew, J. Wang, and M. Egerstedt, “Multi-robot deployment and coordination with embedded graph grammars,” Autonomous Robots, vol. 26, no. 1, pp. 79–98, 2009.

A. K. Das, R. Fierro, V. Kumar, J. P. Ostrowski, J. Spletzer, and C. J. Taylor, “A vision-based formation control framework,” IEEE transactions on robotics and automation, vol. 18, no. 5, pp. 813–825, 2002.

J. Esposito, M. Feemster, and E. Smith, “Cooperative manipulation on the water using a swarm of autonomous tugboats,” in 2008 IEEE International Conference on Robotics and Automation. IEEE, 2008, pp. 1501–1506.

J. Dolan, G. Podnar, S. Stancliff, K. Low, A. Elfes, J. Higinbotham, J. Hosler, T. Moisan, and J. Moisan, “Cooperative aquatic sensing using the telesupervised ocean sensor fleet,” Proceedings of Remote Sensing of the Ocean, Sea Ice, and Large Water Regions, vol. 7473, pp. 1–12, 2009.

C. A. Kitts and I. Mas, “Cluster space specification and control of mobile multirobot systems,” IEEE/ASME Transactions on Mechatronics, vol. 14, no. 2, pp. 207–218, 2009.

M. Dunbabin, A. Grinham, and J. Udy, “An autonomous surface vehicle for water quality monitoring,” in Australasian conference on robotics and automation (ACRA). Citeseer, 2009, pp. 2–4.

M. Caccia, R. Bono, G. Bruzzone, E. Spirandelli, G. Veruggio, A. Stortini, and G. Capodaglio, “Sampling sea surfaces with sesamo: an autonomous craft for the study of sea-air interactions,” IEEE robotics & automation magazine, vol. 12, no. 3, pp. 95–105, 2005.

T. Adamek, C. A. Kitts, and I. Mas, “Gradient-based cluster space navigation for autonomous surface vessels,” IEEE/ASME Transactions on Mechatronics, vol. 20, no. 2, pp. 506–518, April 2015.

I. Mas and C. Kitts, “Cooperative tasks using teams of mobile robots,” in IAENG Transactions on Engineering Technologies, ser. Lecture Notes in Electrical Engineering, H. K. Kim, S.-I. Ao, M. A. Amouzegar, and B. B. Rieger, Eds. Springer Netherlands, 2014, vol. 247, pp. 83–99. [Online]. Available: http://dx.doi.org/10.1007/978-94-007-6818-5

P. Mahacek, C. Kitts, and I. Mas, “Dynamic guarding of marine assets through cluster control of automated surface vessel fleets,” Mechatronics, IEEE/ASME Transactions on, vol. 17, no. 1, pp. 65 –75, Feb 2012.

L. Garberoglio, P. Moreno, I. Mas, and J. I. Giribet, “Coordinated asv-uav control for marine collision-free navigation,” in 2019 XVII Workshop on Information Processing and Control (RPIC). IEEE, 2019, pp. 1–6.

C. Specht, E. Świtalski, and M. Specht, “Application of an autonomous/unmanned survey vessel (asv/usv) in bathymetric measurements,” Polish Maritime Research, vol. 24, no. 3, pp. 36–44, 2017. [Online].Available: https://doi.org/10.1515/pomr-2017-0088

E. Iscar and M. Johnson-Roberson, “Autonomous surface vehicle 3d seafloor reconstruction from monocular images and sonar data,” in OCEANS 2015 - MTS/IEEE Washington, 2015, pp. 1–6.

Clear Path Robotics. Heron usv. [Online]. Available: https: //www.clearpathrobotics.com/heron-unmanned-surface-vessel/

B. Menna, M. S. Villar, and G. Acosta, “Navigation system for MA-CABOT an autonomous surface vehicles using GPS aided strapdown inertial navigation system,” IEEE Latin America Transactions, vol. 17, no. 6, pp. 1009–1019, 2019.

S. A. Villar, A. Madirolas, A. G. Cabreira, A. Rozenfeld, and G. G. Acosta, “ECOPAMPA: A new tool for automatic fish schools detection and assessment from echo data,” Heliyon, vol. 7, no. 1, pp. 2405 8440, 2021.

D. Mallace, “World’s first fully autonomous hydrographic survey,” 2 2018. [Online]. Available: https://tinyurl.com/mallace2018

E. Pinto, F. Marques, R. Mendonça, A. Lourenço, P. Santana, and J. Barata, “An autonomous surface-aerial marsupial robotic team for riverine environmental monitoring: Benefiting from coordinated aerial, underwater, and surface level perception,” in 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014). IEEE, 2014, pp. 443–450.

L. Garberoglio, P. Moreno, I. Mas, and J. I. Giribet, “Navegación fluvial autónoma asistida por visión aérea,” in X Jornadas Argentinas de Robótica, 11 2019.

EchoLogger. Ecosonda ECT400. [Online]. Available: https://www.echologger.com/products/single-frequency-echosounder-deep

ArduSimple. Ardusimple GPS-RTK. [Online]. Available: https://www.ardusimple.com/product/simplertk2b-heading-basic-starter-kit-ip67/

L. Garberoglio, M. Meraviglia, C. D. Pose, J. I. Giribet, and I. Mas, “Choriboard III: A small and powerful flight controller for autonomous vehicles,” in 2018 Argentine Conference on Automatic Control (AADECA), 2018, pp. 1–6.

L. Garberoglio, C. D. Pose, J. I. Giribet, and I. Mas, “Diseño de un autopiloto para pequeños vehículos no tripulados,” Elektron, vol. 3, no. 1, pp. 29–38, 2019.

L. Garberoglio, P. Moreno, I. Mas, and J. I. Giribet, “Vehículo de superficie no tripulado para batimetría autónoma,” in XI Jornadas Argentinas de Robótica, 03 2022.

F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, RotorS – A Modular Gazebo MAV Simulator Framework. Springer, Cham, 01 2016, vol. 625, pp. 595–625.

Mission Planner. Mission planner. [Online]. Available: https: //ardupilot.org/planner/

Pixhawk. Pixhawk autopilot. [Online]. Available: https://pixhawk.org/

Ardurover. Ardurover firmware. [Online]. Available: https://ardupilot.org/rover/

OpenDroneMap. Software de mapeo con drones opendronemap. [Online]. Available: https://www.opendronemap.org/

QGIS. Qgis un sistema de información geográfica libre y de código abierto. [Online]. Available: https://www.qgis.org/es/site/

TIN. Triangulated irregular network. [Online]. Available: https://docs.qgis.org/3.22/en/docs/gentle gis introduction/spatial_analysis interpolation.html#triangulated-irregular-network-tin




DOI: https://doi.org/10.37537/rev.elektron.6.2.164.2022

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia


Copyright (c) 2022 Leonardo Garberoglio, Patricio Moreno, Ignacio Mas, Juan Giribet

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Revista elektron,  ISSN-L 2525-0159
Facultad de Ingeniería. Universidad de Buenos Aires 
Paseo Colón 850, 3er piso
C1063ACV - Buenos Aires - Argentina
revista.elektron@fi.uba.ar
+54 (11) 528-50889