Análisis y modelado de un sistema para tomografía optoacústica basado en interferometría óptica heterodina

Roberto M. Insabella, Martín Germán González

Resumen


En este trabajo se analizan y caracterizan las fuentes de los artefactos introducidos en las imágenes obtenidas con un sistema para tomografía optoacústica basado en el concepto de optoelectrónica definida por software. Se muestra que las señales medidas están afectadas tanto por la geometría cilíndrica del sensor óptico como por el ruido eléctrico. Este último posee frecuencias bien definidas dentro del espectro atribuibles a la electrónica usada en el proceso de heterodinaje del detector óptico de ultrasonido. Se propone una forma de incluir estos efectos en señales simuladas y se prueba el modelo comparándolo con mediciones. Los resultados de este trabajo permitirán el uso de la técnica de aprendizaje profundo para mejorar la calidad de las imágenes obtenidas con este tipo de sistemas tomográficos.

Palabras clave


optoacústica; interferómetro; ruido eléctrico

Texto completo:

PDF HTML

Referencias


L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging. John Wiley & Sons, 2009.

A. Hauptmann and B. Cox, “Deep learning in photoacoustic tomography: current approaches and future directions,” Journal of Biomedical Optics, vol. 25, no. 11, pp. 1 – 46, 2020.

M. G. Gonzalez, E. Acosta, and G. Santiago, “Simple method to determine the resolution and sensitivity of systems for optoacoustic tomography,” Elektron, vol. 2, pp. 63–66, 2018.

A. F. Vidal, L. C. Brazzano, C. Matteo, P. Sorichetti, and M. G. Gonzalez, “Parametric modeling of wideband piezoelectric polymer sensors: design for optoacoustic applications,” Rev. Sci. Instrum., vol. 88, no. 9, p. 095004, 2017.

C. Tian, M. Pei, K. Shen, S. Liu, Z. Hu, and T. Feng, “Impact of system factors on the performance of photoacoustic tomography scanners,” Phys. Rev. Applied, vol. 13, p. 014001, 2020.

G. Paltauf, R. Nuster, and P. Burgholzer, “Characterization of integrating ultrasound detectors for photoacoustic tomography,” Journal of Applied Physics, vol. 105, 2009.

M. G. Gonzalez, L. Riobo, L. C. Brazzano, F. Veiras, P. Sorichetti, and G. Santiago, “Generation of sub-microsecond quasi-unipolar pressure pulses,” Ultrasonics, vol. 98, pp. 15–19, 2019.

S. Tzoumas, A. Rosenthal, C. Lutzweiler, D. Razansky, and V. Ntziachristos, “Spatiospectral denoising framework for multispectral optoacoustic imaging based on sparse signal representation,” Medical Physics, vol. 41, p. 113301, 2014.

J. Barry, E. Lee, and D. Messerschmitt, Digital communication. Springer Science and Business Media, 2012.

C. Dehner, I. Olefir, K. Chowdhury, D. Juestel, and V. Ntziachristos, “Deep learning based electrical noise removal enables high spectral optoacoustic contrast in deep tissue,” arXiv, 2021.

B. Cox, J. Laufer, S. Arridge, and P. Beard, “Quantitative spec- troscopic photoacoustic imaging: a review,” Journal of Biomedical Optics, vol. 17, p. 061202, 2012.

L. Zeng, D. Xing, H. Gu, D. Yang, S. Yang, and L. Xiang, “High antinoise photoacoustic tomography based on a modified filtered backprojection algorithm with combination wavelet,” Medical Physics, vol. 34, pp. 556–563, 2007.

R. Insabella, M. Gonzalez, R. Riobo, K. Hass, and F. Veiras, “Software-defined optoacoustic tomography,” Appl. Opt., vol. 59, pp. 706–711, 2020.

L. Riobo, F. Veiras, M. G. Gonzalez, M. T. Garea, and P. Sorichetti, “High-speed real-time heterodyne interferometry using software-defined radio,” Appl. Opt., vol. 57, no. 2, pp. 217–224, 2017.

A. Sharma, S. Kalva, and M. Pramanik, “A comparative study of continuous versus stop-and-go scanning in circular scanning photoacoustic tomography,” IEEE J. Sel. Top. Quantum Electron, vol. 25, no. 1, pp. 1–9, 2019.

M. Xu, Y. Xu, and L. Wang, “Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries,” IEEE Transactions on Biomedical Engineering, vol. 50, pp. 1086–1099, 2003.

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Acoustic inversion in optoacoustic tomography: A review,” Current Medical Imaging Reviews, vol. 9, pp. 318–336, 2013.

L. Ding, X. Dean-Ben, and D. Razansky, “Real-time model-based inversion in cross-sectional optoacoustic tomography,” IEEE Trans Med Imaging, vol. 35, pp. 1883–1891, 2016.

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans Med Imaging, vol. 29, no. 6, pp. 1275–1285, 2010.

L. Hirsch, M. G. Gonzalez, and L. R. Vega, “On the robustness of model-based algorithms for photoacoustic tomography: comparison between time and frequency domains,” Rev. Sci. Instrum., vol. 92, p. 114901, 2021.

Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, p. 600–612, Apr 2004.




DOI: https://doi.org/10.37537/rev.elektron.5.2.139.2021

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia


Copyright (c) 2021 Martin Gonzalez

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Revista elektron,  ISSN-L 2525-0159
Facultad de Ingeniería. Universidad de Buenos Aires 
Paseo Colón 850, 3er piso
C1063ACV - Buenos Aires - Argentina
revista.elektron@fi.uba.ar
+54 (11) 528-50889