Adquisición y Procesamiento de señales GPS basadas en Radio Definida por Software

Lucas Castillo Delacroix, Mariano Fagre, Isidoro Vaquila, Miguel Angel Cabrera

Resumen


Este trabajo presenta el desarrollo de una herramienta de software que se implementa mediante un bloque de adquisición para señales GPS utilizando tecnología de SDR, específicamente dirigida a dispositivos como HackRF One y RTL-SDR. La herramienta implementada en Python detecta satélites y estima sus parámetros con muy buen desempeño, ofreciendo configuraciones de algoritmo personalizables y posee la capacidad de visualizar el espacio de búsqueda de satélites en tres dimensiones. Las pruebas comparativas con la herramienta de software GNSS-SDR demostraron un alto rendimiento, proporcionando una base sólida para expandir el desarrollo hacia un receptor GNSS completo basado en tecnología SDR. En esta propuesta se destaca el potencial de las plataformas SDR para la investigación y el desarrollo, enfatizando su flexibilidad, capacidad de actualización y rentabilidad para avanzar en futuras tecnologías GNSS.

Palabras clave


GNSS, GPS, Receptor, SDR

Texto completo:

PDF (English) HTML (English)

Referencias


Groves, P. D., Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, Artech House, 2021.

Dabove, P., & Manzino, A. M., GNSS positioning using smartphones: challenges and opportunities, Electronics, 9(2), 258, 2020.

Misra, P., & Enge, P., Global Positioning System: Signals, Measurements, and Performance (2nd ed.). Ganga-Jamuna Press, 2018.

Kaplan, E. D., & Hegarty, C. J., Understanding GPS/GNSS: Principles and Applications, Artech House, 2017.

Angrisano, A., Gaglione, S., & Gioia, C., Performance assessment of assisted GNSS for smartphones in hybrid positioning mode, Sensors, 13(9), 11485-11505, 2013.

Rao, Y. S., Wang, R., & Zhang, X., Advances in GNSS-R Technologies and Applications: A Survey, Remote Sensing, 12(8), 1335, 2020.

Petovello, M. G., & Lachapelle, G., Software-defined GNSS receivers: Architecture, design, and future trends, IEEE Transactions on Aerospace and Electronic Systems, 59(1), 123-138, 2023.

Borre, K., & Akos, D. M., Flexible GNSS receivers: The potential of SDR, Navigation: Journal of the Institute of Navigation, 69(4), 321-335, 2022.

Gamba, F., Tiberius, C., & Teunissen, P. J. G., Challenges and advancements in multi-constellation GNSS positioning: Focusing on Precise Point Positioning (PPP), GPS Solutions, 28(1), 23-38, 2024.

Fernandez-Prades, C., & Seco-Granados, G., GNSS-SDR: Enhancing research capabilities in GNSS signal processing with open-source tools, Proceedings of the International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2021), 123-134, 2021.

Closas, P., Seco-Granados, G., & Fernandez-Prades, C., Open-source software-defined GNSS receivers: A versatile tool for signal processing and algorithm validation, Navigation: Journal of the Institute of Navigation, 69(4), 407-419, 2022.

Fernandez-Prades, C., Closas, P., & Seco-Granados, G., GNSS-SDR: An open-source tool for research and experimentation in GNSS signal processing, IEEE Transactions on Aerospace and Electronic Systems, 59(2), 789-798, 2023.

Söderholm, S., Bhuiyan, M.Z.H., Thombre, S. et al. A multi-GNSS software-defined receiver: design, implementation, and performance benefits. Ann. Telecommun. 71, 399–410, 2016. https://doi.org/10.1007/s12243-016-0518-7.

Zhao, J., Chang, J., Yin, R., & Wang, C., Acquisition and tracking loops based on software defined radio, Symposium on ICT and Energy Efficiency and Workshop on Information Theory and Security (CIICT 2012), pp. 136-141, 2012. doi: 10.1049/cp.2012.1878.

Htay, H., Lwin, Z., & Hla, T., Implementation of Signal Acquisition and Tracking for GPS-Based Software Defined Radio Receiver. International Journal of Geoinformatics, 19(2), 55–64, 2023. https://doi.org/10.52939/ijg.v19i2.2567

Liu, Y., Li, J., & Wang, S., Implementation of GNSS signal processing using Python libraries, Digital Signal Processing, 120, 103-112, 2022.

Akos, D. M., Normark, P. L., Enge, P., Hansson, A. & Rosenlind, A., Real-Time GPS Software Radio Receiver, Proceedings of the 2001 National Technical Meeting of The Institute of Navigation, 2001.

Humphreys, T., Psiaki, M., & Kintner, P., GNSS Receiver Implementation on a DSP: Status Challenges and Prospects, Proceedings of the 19th International Technical Meeting of the Satellite Division of the Institute of Navigation ION GNSS, vol. 4, 2006.

Borre, K., Akos, D. M., Bertelsen N., Rinder P., & Jensen S. H., A software-defined GPS and Galileo receiver: a single-frequency approach, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, MA, 2007. https://doi.org/10.1007/978-0-8176-4540-3

Schmidt, E., Akopian, D., & Pack, D. J., Development of a Real-Time Software-Defined GPS Receiver in a LabVIEW-Based Instrumentation Environment. IEEE Transactions on Instrumentation and Measurement, Vol. 67(9), 2082-2096, 2018.

Capuano, P., Lo Presti, L., & Lohan, E. S., Real-time GNSS signal processing using software-defined radios: Challenges and solutions, Sensors, 22(7), 2448, 2022.

Rao, B. R., & Sathyanarayana, K., Implementation of GNSS SDR receivers: Techniques and applications, IEEE Access, 11, 567-580, 2023.

Konovaltsev, A., & Hein, G. W., Advances in GNSS software-defined radios: From theory to practice, Journal of Satellite Communications and Navigation, 10(2), 104-116, 2023.

Great Scott Gadgets, HackRF One [Software Defined Radio]. https://greatscottgadgets.com/hackrf, 2014.

Osmocom, RTL-SDR [Software Defined Radio]. https://osmocom.org/projects/rtl-sdr, 2012

Gold, R., Optimal binary sequences for spread spectrum multiplexing, IEEE Transactions on Information Theory, 13(4), 619-621. doi:10.1109/TIT.1967.1054010, 1967.

Rohling, H., Radar CFAR thresholding in clutter and multiple target situations. IEEE Transactions on Aerospace and Electronic Systems, AES-19(4), 608-621. doi:10.1109/TAES.1983.309362, 1983.

Gao, Z., Liu, F., Wen, Y., & Wang, X., An overview on target detection techniques in CFAR processing for non-Gaussian interference environment. IEEE Access, 6, 5630-5645. doi:10.1P109/ACCESS.2017.2778080, 2018.

Castillo Delacroix L., Fagre M., Vaquila I., Cabrera M. A., PyGNSS-SDR (versión 1.0) [repository], GitHub, 2024, https://github.com/ltcfacet/PyGNSS-SDR




DOI: https://doi.org/10.37537/rev.elektron.8.2.195.2024

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia


Copyright (c) 2024 Lucas Castillo Delacroix, Mariano Fagre, Isidoro Vaquila, Miguel Angel Cabrera

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Revista elektron,  ISSN-L 2525-0159
Facultad de Ingeniería. Universidad de Buenos Aires 
Paseo Colón 850, 3er piso
C1063ACV - Buenos Aires - Argentina
revista.elektron@fi.uba.ar
+54 (11) 528-50889