AGRADECIMIENTOS
El trabajo de F. Messina es financiado por una beca
de doctorado Peruilh de la Facultad de Ingenier
´
ıa de la
Universidad de Buenos Aires. Este art
´
ıculo fue posible
por la financiaci
´
on del proyecto FONARSEC UREE 4
”Sistema de Medici
´
on fasorial orientado al desarrollo de
redes inteligentes” del FONARSEC, Ministerio de Cien-
cia, Tecnolog
´
ıa e Innovaci
´
on Productiva; y el proyecto
PIP11220150100578CO del CONICET.
REFERENCIAS
[1] G. Giannakis, V. Kekatos, N. Gatsis, S.-J. Kim, H. Zhu, and B. Wol-
lenberg, “Monitoring and Optimization for Power Grids: A Signal
Processing Perspective,” IEEE Signal Process. Mag, vol. 30, no. 5,
pp. 107–128, Sept. 2013.
[2] F. Aminifar, M. Fotuhi-Firuzabad, A. Safdarian, A. Davoudi, and
M. Shahidehpour, “Synchrophasor measurement technology in power
systems: Panorama and state-of-the-art,” IEEE Access, vol. 2, pp.
1607–1628, 2014.
[3] J. D. L. Ree, V. Centeno, J. S. Thorp, and A. G. Phadke, “Syn-
chronized phasor measurement applications in power systems,” IEEE
Transactions on Smart Grid, vol. 1, no. 1, pp. 20–27, June 2010.
[4] IEEE Standard for Synchrophasor Measurements for Power Systems,
IEEE Std. C37.118.1-2011 (Revision of IEEE Std C37.118-2005),
Dec. 2011.
[5] IEEE Standard for Synchrophasor Measurements for Power Systems –
Amendment 1: Modification of Selected Performance Requirements,
IEEE Std. C37.118.1a-2014 (Amendment to IEEE Std C37.118.1-
2011), Apr. 2014.
[6] P. Castello, M. Lixia, C. Muscas, and P. Pegoraro, “Impact of the
Model on the Accuracy of Synchrophasor Measurement,” IEEE Trans.
Instrum. Meas., vol. 61, no. 8, pp. 2179–2188, Aug. 2012.
[7] G. Barchi, D. Macii, and D. Petri, “Synchrophasor estimators accu-
racy: A comparative analysis,” IEEE Trans. Instrum. Meas., vol. 62,
no. 5, pp. 963–973, May 2013.
[8] G. Barchi, D. Macii, D. Belega, and D. Petri, “Performance of
synchrophasor estimators in transient conditions: A comparative anal-
ysis,” IEEE Trans. Instrum. Meas., vol. 62, no. 9, pp. 2410–2418, Sept
2013.
[9] M. Karimi-Ghartemani and H. Karimi, “Processing of symmetrical
components in time-domain,” IEEE Trans. Power Syst., vol. 22, no. 2,
pp. 572–579, May 2007.
[10] J. Grainger and W. Stevenson, Power System Analysis. McGraw-Hill,
1994.
[11] F. Messina, P. Marchi, L. Rey Vega, C. G. Galarza, and H. Laiz,
“A Novel Modular Positive-Sequence Synchrophasor Estimation Al-
gorithm for PMUs,” IEEE Transactions on Instrumentation and
Measurement, vol. 66, no. 6, pp. 1164–1175, June 2017.
[12] A. Phadke and J. Thorp, Synchronized Phasor Measurements and
Their Applications, ser. Power Electronics and Power Systems.
Springer US, 2008.
[13] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1993.
[14] G. Turin, “An introduction to matched filters,” IRE Transactions on
Information Theory, vol. 6, no. 3, pp. 311–329, June 1960.
[15] A. Oppenheim and R. Schafer, Discrete-Time Signal Processing, ser.
Prentice-Hall signal processing series. Pearson Education, 2011.
[16] D. Macii, D. Petri, and A. Zorat, “Accuracy of dft-based synchropha-
sor estimators at off-nominal frequencies,” in 2011 IEEE International
Workshop on Applied Measurements for Power Systems (AMPS), Sept
2011, pp. 19–24.
[17] G. Andria, M. Savino, and A. Trotta, “Windows and interpolation
algorithms to improve electrical measurement accuracy,” IEEE Trans-
actions on Instrumentation and Measurement, vol. 38, no. 4, pp. 856–
863, Aug 1989.
[18] C. Offelli and D. Petri, “The influence of windowing on the accuracy
of multifrequency signal parameter estimation,” IEEE Transactions
on Instrumentation and Measurement, vol. 41, no. 2, pp. 256–261,
Apr 1992.
[19] P. Stoica and R. Moses, Spectral Analysis of Sig-
nals. Pearson Prentice Hall, 2005. [Online]. Available:
https://books.google.com.ar/books?id=h78ZAQAAIAAJ
[20] D. Macii, D. Petri, and A. Zorat, “Accuracy Analysis and En-
hancement of DFT-Based Synchrophasor Estimators in Off-Nominal
Conditions,” IEEE Trans. Instrum. Meas., vol. 61, no. 10, pp. 2653–
2664, Oct. 2012.
[21] D. Belega and D. Petri, “Accuracy Analysis of the Multicycle Syn-
chrophasor Estimator Provided by the Interpolated DFT Algorithm,”
IEEE Trans. Instrum. Meas., vol. 62, no. 5, pp. 942–953, May 2013.
[22] D. Belega, D. Dallet, and D. Petri, “Statistical description of the sine-
wave frequency estimator provided by the interpolated dft method,”
Measurement, vol. 45, no. 1, pp. 109 – 117, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0263224111003058
[23] J. A. de la O Serna, “Dynamic Phasor Estimates for Power System
Oscillations,” IEEE Trans. Instrum. Meas., vol. 56, no. 5, pp. 1648–
1657, Oct. 2007.
[24] M. A. Platas-Garza and J. A. de la O Serna, “Dynamic Phasor and
Frequency Estimates Through Maximally Flat Differentiators,” IEEE
Transactions on Instrumentation and Measurement, vol. 59, no. 7, pp.
1803–1811, July 2010.
[25] D. Petri, D. Fontanelli, and D. Macii, “A frequency-domain algorithm
for dynamic synchrophasor and frequency estimation,” IEEE Trans.
Instrum. Meas., vol. 63, no. 10, pp. 2330–2340, Oct. 2014.
[26] F. Messina, L. Rey Vega, P. Marchi, and C. G. Galarza, “Optimal
Differentiator Filter Banks for PMUs and their Feasibility Limits,”
IEEE Transactions on Instrumentation and Measurement, 2017, en
prensa.
[27] D. Belega, D. Fontanelli, and D. Petri, “Dynamic phasor and fre-
quency measurements by an improved taylor weighted least squares
algorithm,” IEEE Transactions on Instrumentation and Measurement,
vol. 64, no. 8, pp. 2165–2178, Aug 2015.
[28] J. A. de la O Serna, “Synchrophasor measurement with polynomial
phase-locked-loop taylor-fourier filters,” IEEE Transactions on Instru-
mentation and Measurement, vol. 64, no. 2, pp. 328–337, Feb 2015.
[29] M. A. Platas-Garza and J. A. de la O Serna, “Dynamic harmonic
analysis through taylor-fourier transform,” IEEE Transactions on
Instrumentation and Measurement, vol. 60, no. 3, pp. 804–813, March
2011.
[30] ——, “Polynomial implementation of the taylor-fourier transform
for harmonic analysis,” IEEE Transactions on Instrumentation and
Measurement, vol. 63, no. 12, pp. 2846–2854, Dec 2014.
[31] A. Jerri, The Gibbs Phenomenon in Fourier Analysis,
Splines and Wavelet Approximations, ser. Mathematics and
Its Applications. Springer US, 1998. [Online]. Available:
https://books.google.com.ar/books?id=y2c00LAMnFUC
[32] D. Macii, G. Barchi, and D. Petri, “Design criteria of digital filters for
synchrophasor estimation,” in 2013 IEEE International Instrumenta-
tion and Measurement Technology Conference (I2MTC), May 2013,
pp. 1579–1584.
[33] A. J. Roscoe, B. Dickerson, and K. E. Martin, “Filter design masks
for c37.118.1a-compliant frequency-tracking and fixed-filter m-class
phasor measurement units,” IEEE Trans. Instrum. Meas., vol. 64,
no. 8, pp. 2096–2107, Aug 2015.
[34] F. Messina, P. Marchi, L. Rey Vega, and C. G. Galarza, “Design
of Synchrophasor Estimation Systems with Convex Semi-Infinite
Programming,” in Electrical Power and Energy Conference (EPEC),
Ottawa, Canada, Oct. 2016.
[35] A. W. Potchinkov, “Design of optimal linear phase fir filters by a semi-
infinite programming technique,” Signal Processing, vol. 58, no. 2,
pp. 165–180, 1997.
[36] R. Reemtsen and J. R
¨
uckmann, Semi-Infinite Programming, ser.
Nonconvex Optimization and Its Applications. Springer US, 1998.
[37] S. Boyd and L. Vandenberghe, Convex Optimization, ser. Berichte
¨
uber verteilte messysteme. Cambridge University Press, 2004.
[38] MATLAB, Optimization Toolbox. Natick, Massachusetts: The Math-
Works Inc., 2016.
[39] “Semi-infinite programming solvers: CSIP and NSIPS,”
http://www.norg.uminho.pt/aivaz/software.html.
Revista elektron, Vol. 1, No. 2, pp. 79-90 (2017)
http://elektron.fi.uba.ar