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Resumen— En este trabajo se desarrolló un sistema
de reconstrucción de imágenes en el marco de la
tomografı́a computarizada por ultrasonido, utilizando
técnicas de aprendizaje profundo para la estimación
de mapas de velocidad, asociados a la propagación de
ondas acústicas. Se abordó el diseño y entrenamiento
de diferentes arquitecturas de redes neuronales y se
evaluó su desempeño. Para esto, se generó un conjunto
de datos sintético mediante simulaciones y se realizó la
adquisición de sinogramas reales mediante un sistema
experimental que utiliza un transductor de inmersión.

Palabras clave: tomografı́a; ultrasonido; DCN; U-
Net.

Abstract— This work developed an image
reconstruction system within the framework of
Ultrasound Computed Tomography, utilizing deep
learning techniques for the estimation of velocity maps
associated with acoustic wave propagation. The design
and training of different neural network architectures
were addressed, and their performance was evaluated.
To this end, a synthetic dataset was generated through
simulations, and the acquisition of real sinograms was
performed using an experimental system that employs
an immersion transducer.
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I. INTRODUCCIÓN

Las técnicas de obtención de imágenes médicas permi-
ten visualizar estructuras internas del cuerpo de forma no
invasiva. Entre ellas, la tomografı́a se destaca por generar
imágenes transversales del cuerpo a partir de mediciones
sobre diferentes ángulos [1], [2]. En particular, la tomo-
grafı́a computarizada por ultrasonido (TCUS) surge como
una alternativa segura frente a la radiación ionizante, con
gran potencial para la detección temprana del cáncer de
mama [3], [4]. A diferencia de la radiografı́a, el ultrasonido
se ve afectado en gran medida por fenómenos ondulatorios
como reflexión, refracción y difracción [5], [6], lo que
convierte la reconstrucción en un problema inverso no lineal
de alta complejidad [7], [8].

La TCUS se basa en aplicar un campo acústico conocido
sobre un objeto y analizar el campo transmitido o reflejado
para estimar propiedades del medio, como la velocidad del
sonido o la atenuación acústica [5], [9]. Estas propiedades
revelan información sobre la estructura interna del tejido
y pueden obtenerse mediante distintas configuraciones de
transductores.

Una configuración tı́pica para la adquisición de imágenes
tomográficas consiste en rodear el objeto con una serie de
transductores, o rotar un transductor alrededor del mismo
para sondear el objeto con ondas de ultrasonido y medir
la interacción resultante. La opción de girar mecánicamente
un transductor alrededor del objeto tiene la ventaja de ser
una configuración simple y poco costosa. Por otro lado, la
utilización de un arreglo de transductores es generalmente
más costosa de implementar, pero acelera enormemente el
proceso de adquisición de datos.

Existen varios algoritmos de reconstrucción de imágenes
para obtener el mapa de velocidades del objeto de interés. En
el presente trabajo, se propone un enfoque basado en redes
neuronales para la estimación de los mapas de velocidad del
sonido. Para tal fin, se ha generado una base de datos sintéti-
ca empleando los algoritmos de simulación y reconstrucción
utilizados en un estudio previo [10]. Este volumen de datos
sintéticos se creó con el objetivo de entrenar las arquitecturas
de redes neuronales propuestas y, posteriormente, lograr la
reconstrucción del mapa de velocidades asociado a cada
medición experimental.

II. TOMÓGRAFO ACÚSTICO 2-D BASADO EN UN ÚNICO
TRANSDUCTOR

En el desarrollo de sistemas de TCUS, la precisión de las
mediciones depende fuertemente del diseño de la configura-
ción experimental. Una arquitectura robusta y simple no sólo
mejora la calidad de los datos, sino que también minimiza
la influencia de factores externos, como ruido, interferen-
cias electromagnéticas, variaciones térmicas y errores sis-
temáticos. Como sistema experimental se utilizó el montaje
desarrollado previamente en el laboratorio del Grupo de
Láser, Óptica de Materiales y Aplicaciones Electromagnéti-
cas (GLOmAEe), para la adquisición de sinogramas [10].
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Figura 1. Esquema de un transductor de inmersión.

Figura 2. Transformada de Fourier de la señal emitida por el transductor.

II-A. Transductor de inmersión

La Fig. 1 muestra un esquema tı́pico de un transductor
de inmersión. Un transductor convierte señales eléctricas
en ondas acústicas y viceversa; su función principal es
transmitir energı́a ultrasónica al medio y recibir los ecos
reflejados. Entre sus componentes, el más relevante es el
elemento activo piezoeléctrico, que efectúa esa conversión
electrotromecánica. El piezoeléctrico está polarizado y co-
nectado mediante electrodos al conector eléctrico exterior;
a su vez, un respaldo absorbente amortigua vibraciones
residuales y la placa de desgaste protege el elemento activo
y ayuda a adaptar la impedancia acústica entre el transductor
y el medio de acoplamiento [11]. Se utilizó un trans-
ductor Olympus V306-SU [12], con frecuencia central de
2,25MHz, patrón de campo no enfocado y diámetro efectivo
de 13mm. El espectro de la señal emitida se muestra en la
Fig. 2, donde se observa el pico principal coincidente con
la frecuencia central reportada por el fabricante.

En los sistemas de TCUS, el acoplamiento acústico entre
el transductor y el objeto resulta crı́tico para garantizar
mediciones confiables. En nuestro caso, se utilizó agua
destilada como medio de transmisión del ultrasonido, ya
que su impedancia acústica es similar a la de los tejidos
biológicos y permite una transmisión eficiente de la energı́a.

II-B. Configuración experimental

En la Fig. 3 se muestra la cuba de plástico acrı́lico en la
que se realizaron las mediciones. Ésta cuenta con orificios
laterales para los transductores, un eje de rotación conectado
a un motor paso a paso (Newport PR50CC con controlador
ESP-300), juntas de goma para mantener estanqueidad y
una válvula de desagüe. Para determinar la velocidad de

Figura 3. Cuba acrı́lica utilizada en el sistema de medición.

sonido se midió la temperatura del agua con un termistor
NTC calibrado en nuestro laboratorio.

En la Fig. 4 se presenta el esquemático del sistema de
transmisión y recepción de ultrasonido. Durante la transmi-
sión, el generador de pulsos (HP 222A) cortos (< 25ns) de
tensión se conecta directamente al transductor, mientras que
durante la recepción se acopla al amplificador (Picosecond
5828A) a través del conmutador T/R. Las señales se registra-
ron con un osciloscopio (Tektronix TDS2024B). El control
y adquisición de datos se realizaron desde una computadora,
mediante un algoritmo implementado en Python basado en
la librerı́a PyVISA.

Figura 4. Esquema del sistema experimental de emisión y detección
ultrasónica.

II-C. Procedimiento de adquisición

El generador de pulsos excita el transductor, que emite
una onda ultrasónica a través del agua. Esta señal interactúa
con el objeto bajo estudio, y parte de ella es reflejada hacia
el transductor, que ahora actúa como receptor. Una vez
finalizada la emisión, la caı́da de tensión en los terminales
del conmutador T/R desciende por debajo del umbral de
±2 V, lo que provoca que el circuito conmute y permita
el paso de la señal acústica recibida. Esta señal atraviesa
el interruptor, se dirige al amplificador y, por último, es
digitalizada por el osciloscopio. Luego de cada adquisición,
el objeto rota un ángulo controlado por el motor paso a paso.
La temperatura se mide al inicio y al final de cada sesión
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para relevar el cambio de la velocidad del sonido durante la
adquisición de un sinograma.

II-D. Ruido experimental

Se realizaron mediciones sin un objeto presente, a fin
de relevar y caracterizar el ruido que presenta la confi-
guración. Este ruido puede estar asociado a interferencias
eléctricas, provenientes de equipos o dispositivos externos
al sistema. La Fig. 5 muestra cinco de las mediciones de
ruido obtenidas, digitalizadas por el osciloscopio, junto con
el espectro en frecuencia de cada una de esas señales. Para el
espectro, se realizó un acercamiento al rango de 0 a 5 MHz,
para visualizar claramente las componentes espectrales con
mayor aporte.

Figura 5. (a) Ejemplo de señales de ruido medidas en ausencia de objeto.
(b) Espectro en frecuencia de las señales medidas, con un acercamiento a
un ancho de banda de 10MHz.

El ruido adquiere mayor relevancia para objetos con
ı́ndice de refracción similares al agua o para determinados
ángulos de medición donde la relación señal a ruido (SNR)
es baja.

III. REDES NEURONALES PROFUNDAS

III-A. Redes convolucionales densas

Las redes convolucionales densas (DCN) son redes neu-
ronales convolucionales caracterizadas por tener una conec-
tividad densa, a modo de aumentar el flujo de información
entre capas. Esta red introduce conexiones directas desde
cada capa a todas las capas posteriores, por lo que cada
instancia recibe como entrada la concatenación de las salidas
de todas las capas previas. La salida x de la capa ℓ puede
expresarse por la siguiente ecuación:

xℓ = Hℓ([x0, x1, ..., xℓ−1]) (1)

donde [x0, x1, ..., xℓ−1] representa la concatenación de las
salidas producidas por las capas anteriores, y Hℓ(·) es una
transformación no lineal. Esta transformación consiste en
una serie de operaciones convolucionales que pueden estar
acompañadas por etapas de normalización, funciones de
activación no lineales como ReLU y operaciones de agrupa-
miento (pooling), dependiendo del diseño de la arquitectura.

Dado que la concatenación de (1) no es viable cuando
el tamaño de los mapas de caracterı́sticas cambia, la red es
dividida en varios bloques densamente conectados, definidos
por la transformación Hℓ. Entre ellos, se definen capas de
transición, que incluyen normalizaciones, convoluciones y
agrupamientos para reducir la dimensión de los datos. En la
Fig. 6 se muestra un diagrama en bloques de una red de tipo
DCN, utilizada para la clasificación de imágenes. Se observa
que la misma cuenta con tres bloques densos y dos capas de
transición entre los mismos, las cuales están compuestas por
una operación de convolución (C) para reducir la cantidad
de canales, seguida de una capa de agrupamiento (P) para
reducir la resolución espacial de cada canal. Además, a la
entrada de la red se encuentra una capa de convolución
para extraer las caracterı́sticas básicas de la imagen y, a
la salida, una capa de agrupamiento seguida de una capa
completamente conectada (L) para obtener la clasificación
esperada de la imagen de entrada.

Figura 6. Diagrama de una red DCN.

Por otro lado, en los bloques densamente conectados, cada
operación Hℓ produce k mapas de caracterı́sticas, lo que
implica que la capa ℓ tiene k0 + k · (ℓ− 1) entradas, donde
k0 es el número de canales de entrada. A este hiperparámetro
k se lo denomina tasa de crecimiento, y su función principal
es controlar el incremento progresivo de la información
extraı́da en la red a medida que se agregan capas [13].

III-B. U-Net

En la Fig. 7 se muestra la otra red usada en este trabajo,
que tiene una arquitectura tipo U-Net [14]. Estas redes
reciben su nombre por la forma de su estructura, ya que
cuentan con un camino descendente, uno ascendente y uno
de conexión entre ambos, resultando en una estructura con
forma de U (ver Fig. 7). El primer camino se denomina
ruta de contracción (codificador) y está compuesto por
distintas capas convolucionales, junto con operaciones de
submuestreo, que buscan reducir la resolución de la entrada,
aumentando la cantidad de canales. De esta manera se
extraen las caracterı́sticas más relevantes de la imagen de
entrada para cada resolución, codificando los datos. Cada
capa de submuestreo reduce la resolución de la imagen
y aumenta la profundidad o número de canales. El otro
camino se denomina ruta de expansión (decodificador) y
está compuesto por capas convolucionales transpuestas, las
necesarias para decodificar los datos hasta su resolución ori-
ginal. El punto medio entre estos dos caminos se denomina
cuello de botella y es la capa que representa el mayor punto
de abstracción respecto a la entrada original, ya que los
datos se encuentran en su máxima compresión. Por último,
existen las conexiones de atajo, que son conexiones entre las
distintas rutas que buscan acelerar el entrenamiento y ali-
vianar el problema del desvanecimiento del gradiente [14].
Este problema se presenta cuando los gradientes se vuelven
demasiado pequeños, ya que continúan disminuyendo y
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Figura 7. Diagrama de una U-Net.

actualizando pesos de las capas, hasta que se vuelven tan
cercanos a 0 que la red prácticamente no se actualiza.

En la Fig. 7, además, se presentan los valores de los
parámetros que caracterizan a esta red utilizados en este
trabajo. Se observa que la entrada posee un único canal,
que es transformado a 16 canales mediante una doble
convolución. A partir de allı́, el número de canales se
duplica en cada etapa del codificador, pasando de 16 a
32, luego a 64, 128 y finalmente 256 en el cuello de
la red. Cada una de estas etapas reduce la dimensión
espacial mediante operaciones de max-pooling. En el camino
del decodificador, las dimensiones espaciales se recuperan
mediante operaciones de sobremuestreo, mientras que el
número de canales se reduce progresivamente a la mitad. En
cada nivel del decodificador, las caracterı́sticas recuperadas
se concatenan con aquellas provenientes del codificador en
la misma escala, permitiendo preservar tanto la información
local como la global. Finalmente, una última convolución
proyecta los 16 canales a la cantidad deseada de canales de
salida.

III-C. Autoencoders variacionales

Los autoencoders son redes neuronales diseñadas para
aprender una representación comprimida de los datos de
entrada y, posteriormente, reconstruirlos. Están compuestos
por un codificador, que extrae las variables latentes rele-
vantes; un cuello de botella, que contiene la representación
comprimida; y un decodificador, que reconstruye la entrada
original a partir de dichas variables.

A diferencia de los autoencoders determinı́sticos, los
autoencoders variacionales (VAE) aprenden una distribución
probabilı́stica continua del espacio latente, en lugar de
una representación fija. Mediante una reparametrización, la
variable latente se define como

z = µx + σx ⊙ ϵ, ϵ ∼ N (0, I), (2)

donde ⊙ denota la multiplicación elemento a elemento,
N (0, I) la distribución normal estándar y µx y σx la
media y desviación estándar de la distribución del espacio
latente, respectivamente. Esta formulación permite separar
los componentes determinı́sticos y estocásticos, facilitando
el entrenamiento y la generación de nuevas señales [15],
[16].

La Fig. 8 ilustra un esquema general de un VAE: el
codificador produce los parámetros µx y σx, a partir de

Figura 8. Esquema de un autoencoder variacional.

los cuales se obtiene la variable latente z, que luego el
decodificador utiliza para reconstruir la salida x̂.

IV. GENERACIÓN DEL CONJUNTO DE DATOS

IV-A. Imágenes verdaderas

La generación de este conjunto de datos sintético se
abordó inicialmente creando un conjunto de imágenes en
blanco y negro, con una resolución de 200× 200 pı́xeles.

Para la representación de los objetos bajo estudio, se utili-
zaron figuras geométricas básicas, especı́ficamente cı́rculos
y polı́gonos regulares con una cantidad de lados entre 3
y 6 (triángulos, cuadrados, pentágonos y hexágonos). Para
cada figura se utilizaron diferentes escalas y ángulos de
rotación aleatorios. Existen tres configuraciones principales
en la generación de estas figuras:

1. Figuras sólidas: figuras geométricas sin modificacio-
nes internas y posicionadas en el centro de la imagen,
véase Fig. 9(a).

2. Figuras sólidas con sustracción interna: Se parte de
una figura geométrica maciza y luego se sustraen entre
1 y 3 figuras más pequeñas de su interior; estas pueden
ser de cualquiera de los tipos de figuras mencionadas.
La sustracción se realiza en distintas posiciones dentro
de la figura principal, generando patrones huecos o
perforados, véase Fig. 9(b).

3. Figuras espejadas: Para cada imagen, se generan
dos figuras del mismo tipo, con diferentes tamaños,
ambas ubicadas alrededor del centro de la imagen y
en cuadrantes opuestos, véase Fig. 9(c).

En total, se generaron 1000 imágenes destinadas a con-
formar el conjunto de datos de entrenamiento y otras 100
imágenes para el de testeo.

IV-B. Simulación de sinogramas

Las imágenes generadas se emplearon para simular sino-
gramas representativos del banco experimental. El algoritmo
desarrollado rota cada imagen y emite un pulso ultrasónico,
registrando las señales reflejadas. Para la simulación acústi-
ca se utilizó el programa j-Wave, un simulador numérico
basado en JAX, que permite diferenciación automática, pa-
ralelización en GPU y resolución eficiente de ecuaciones de
onda mediante discretizaciones espectrales o de diferencias
finitas [17], [18].

El dominio de simulación fue discretizado en una grilla
finita, aplicando condiciones de contorno de Perfectly Mat-
ched Layer (PML) para evitar reflexiones causadas por los
lı́mites del recinto de simulación. El transductor se modeló
como una lı́nea de fuentes puntuales sincronizadas, cuya
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Figura 9. (a) Figura maciza generada (caso 1). (b) Figura generada con
sustracción interna (caso 2). (c) Figuras espejadas generadas (caso 3).

aproximación es válida siempre que las dimensiones fı́sicas
del sensor en la configuración experimental sean pequeñas
en comparación con la longitud de onda de las señales
acústicas. En la Fig. 10 se expone una comparación del
pulso emitido por el transductor y el simulado, utilizado
en la generación de sinogramas. Esta última fue generada
aplicando una rampa decreciente junto con una ventana
gaussiana a la amplitud de una señal senoidal de 2.25 MHz,
a modo de aproximar la señal utilizada al pulso emitido por
el transductor.

Figura 10. Comparación entre la señal medida emitida por el transductor
y la simulada.

La velocidad del sonido del medio (vs) y del objeto (vr)
se asignó a partir de distribuciones uniformes y teniendo
en cuenta las condiciones que se tienen en la configuración
experimental:

vs ∼ U(1480, 1500) m/s (agua)

vr ∼ U(1600, 1620) m/s (goma)

resultando en ı́ndices de refracción nr ∈ [1.067, 1.095]. Para
cada imagen, se generaron tres sinogramas con distintas
combinaciones de velocidades, obteniendo un total de 3000
imágenes para el conjunto de entrenamiento y 300 para el
de evaluación.

Cada simulación consistió en Na = 90 ángulos de
rotación y señales temporales de Nt = 2500 muestras. El
pulso ultrasónico utilizado replica la señal medida experi-
mentalmente. El mismo fue generado a partir de aplicar
una rampa decreciente junto con una ventana gaussiana a
la amplitud de una señal senoidal. Las señales reflejadas
obtenidas para cada ángulo conforman los sinogramas.

IV-C. Generación de ruido coloreado

Para reproducir las condiciones experimentales, se generó
ruido coloreado mediante un VAE entrenado con 270 señales
de ruido medidas sin objeto. El modelo aprendió la distri-
bución estadı́stica del ruido real y permitió sintetizar nuevas
instancias a partir de ruido blanco gaussiano. En la Fig. 11 se
muestran cinco señales de ruido generadas por la red, tanto
en el dominio temporal como en el de la frecuencia. Estas
señales fueron adicionadas a los sinogramas simulados,
obteniendo un conjunto de datos más representativo del
sistema experimental.

Figura 11. (a) Ejemplos de señales de ruido generadas por la red VAE
implementada en este trabajo. (b) Espectro en frecuencia de las señales
generadas.

IV-D. Algoritmo de reconstrucción clásico

Se analizó la respuesta de las redes implementadas ante
entradas que contienen información espacial, comparándolas
con reconstrucciones obtenidas mediante un enfoque clásico.
Para ello, los sinogramas se reconstruyeron utilizando el
algoritmo descrito en [10], el cual modela la propagación
y detección de ondas acústicas en un medio homogéneo,
adaptado a la geometrı́a circular del sistema. El algoritmo
requiere definir parámetros experimentales, entre ellos el
desvı́o estándar del ruido temporal Snoise. La estimación
espectral de la señal reflejada se obtiene según:

Sw(f) =
Pr(f)P

∗
t (f)

|Pt(f)|2 + S2
noise

, (3)

donde Pr(f) y Pt(f) representan las transformadas de
Fourier de las señales reflejada y emitida, respectivamente.
El término S2

noise estabiliza el filtro ante frecuencias con muy
baja amplitud, maximizando la respuesta a ecos coherentes
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con el pulso transmitido, debido al numerador que calcula la
correlación cruzada entre la señal medida y la transmitida.

Cada sinograma es proyectado sobre una grilla bidimen-
sional centrada en el eje de rotación. Para cada ángulo θj ,
el tiempo de ida y vuelta al pı́xel (xi, yi) se calcula como:

ta(i, θj) =
2

vs

[
(Rs cos θj−xi) cos θj+(Rs sin θj−yi) sin θj

]
,

(4)
siendo θ el ángulo de rotación y Rs el radio del transductor.
La contribución de cada ángulo es acumulada según:

Fi =

Na∑
j=1

Ψ̃θ(ta(i, θj))∆θ, (5)

obteniéndose la imagen reconstruida Fi. A partir de ahora,
este algoritmo se denominará USRT.

Se evaluaron distintos tamaños de imágenes, registrando
la PSNR y el tiempo de cómputo. Se encontró que imágenes
mayores a 256×256 la PSNR no mejora significativamente,
mientras que el tiempo de reconstrucción aumenta de forma
considerable. Por este motivo, se adoptó 256 × 256 para
generar el conjunto de datos sintéticos de entrenamiento.

La tomografı́a por reflexión presenta como limitación la
pérdida de información en bajas frecuencias [10]. Por lo
tanto, para emular este efecto, se aplicó un filtro pasa-
altos sobre las imágenes originales, enfatizando los bordes
y eliminando componentes de baja frecuencia. El filtro se
implementó mediante la convolución con el kernel de 5×5:

−1 −1 −1 −1 −1
−1 1 2 1 −1
−1 2 4 2 −1
−1 1 2 1 −1
−1 −1 −1 −1 −1

 .

Las imágenes filtradas conforman las imágenes objetivo
del conjunto de datos.

V. REDES IMPLEMENTADAS

Se utilizaron dos topologı́as para abordar el problema de
reconstrucción de imágenes tomográficas. La primera consta
de una arquitectura hı́brida, donde se utiliza una red DCN,
cuya salida se encuentra conectada a una U-Net. Esta red
toma como entrada los sinogramas generados y devuelve una
imagen reconstruida con la información sobre los contornos
internos y externos del objeto.

Otro enfoque utilizado fue el uso de una red U-Net
para el filtrado de los artefactos presentes en métodos de
reconstrucción clásicos. De esta forma, se buscó que la
red funcione como un filtro que logre discernir entre la
información de alta frecuencia correspondiente al objeto y la
correspondiente a los artefactos que introduce el algoritmo.

Las redes se entrenaron utilizando el conjunto de datos
generado y se validaron adicionalmente con mediciones ex-
perimentales. Como funciones de error se emplearon la raı́z
cuadrática media (RMSE) y el ı́ndice de similitud estructural
para datos de punto flotante (DSSIM) [19] combinadas de
la siguiente forma:

Φ = αRMSE + β DSSIM, α = β = 0.5, (6)

Para evaluar el desempeño del modelo en mediciones
reales, se utilizaron sinogramas obtenidos a partir de la

configuración experimental. Las reconstrucciones de estos
sinogramas se exponen en la Fig. 12. Los mismos se
corresponden con mediciones de 90 ángulos de una goma
rectangular de tamaño 18,5mm × 11,6mm (izquierda) y de
un cilindro de aluminio de 12,7mm de diámetro (derecha).

Figura 12. Reconstrucciones de sinogramas obtenidos mediante la
configuración experimental.

Todos los entrenamientos se realizaron con una compu-
tadora con una CPU Intel i9-10900F, 128 GB de RAM y
dos GPU NVIDIA RTX-3090 de 24 GB cada una.

V-A. DCN + U-Net con información USRT

Se evaluó el desempeño de la red según dos variantes.
En primer lugar, se probó introducir el mapa de velocidades
estimado por el algoritmo USRT a la U-Net, como canal
adicional, y luego estimar los mapas de velocidad sin esta
información.

A su vez, se evaluaron dos estrategias de entrenamiento:
Entrenamiento conjunto en un paso (E1P): actuali-
zar todos los parámetros de a red simultáneamente.
Entrenamiento en dos pasos (E2P): pre-entrenar la
DCN, fijar sus pesos y entrenar la U-Net.

El entrenamiento se realizó en 200 épocas para E1P; en
E2P se emplearon fases separadas para DCN y U-Net, ambas
de 200 épocas cada una. Además, se utilizó el optimizador
de Adam para llevar a cabo el aprendizaje de la red.

Dos ejemplos de testeo con datos sintéticos se presentan
en la Fig. 13(a) donde se muestra que la red reduce los
artefactos presentes en la reconstrucción USRT pero con
marcadas irregularidades en los contornos.

Figura 13. Comparación (objetivo / predicción / USRT) para DCN + U-
Net con información USRT, con datos sintéticos. (a) Caso E1P. (b) Caso
E2P.

En la Fig. 14(a) se puede ver que sólo el cilindro metálico
fue correctamente identificado cuando la red fue aplicada a
mediciones reales.
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Figura 14. Predicciones (DCN + U-Net con USRT) a partir de sinogramas
experimentales. (a) Caso E1P. (b) Caso E2P.

En las Figs. 13(b) y 14(b) se puede apreciar de forma
cualitativa que las predicciones mejoran considerablemente
al modificar el método de entrenamiento a un enfoque E2P,
y que es posible identificar la forma original del objeto
en las mediciones reales, aunque los contornos presenten
irregularidades con respecto al objeto original.

V-B. DCN + U-Net sin información USRT

Se entrenó nuevamente la red pero esta vez sin incluir la
reconstrucción por USRT como segundo canal a la entrada
de la U-Net. El objetivo fue evaluar si el modelo podı́a
reconstruir los mapas de velocidad utilizando únicamente
la información proveniente de los sinogramas.

Las predicciones con datos sintéticos (ver Fig. 15(a))
muestran que, si bien se preservan las estructuras generales,
la red no logra definir contornos nı́tidos.

Con las mediciones experimentales (ver Fig. 16(a)) las
predicciones no presentan mejoras respecto al caso de la
subsección V-A, mostrando formas indefinidas y ruidosas.

Figura 15. Comparación (objetivo / predicción E2P / USRT) para DCN +
U-Net sin información USRT, con datos sintéticos. (a) Caso E1P. (b) Caso
E2P.

En el E2P, la función de error mostró grandes saltos
en el error de validación (ver Fig. 17), lo que evidencia
la dificultad del modelo para generalizar sin información
auxiliar de la reconstrucción.

Los resultados obtenidos a partir del conjunto de testeo
(Fig. 15(b)) y de las mediciones reales (Fig. 16(b)) con-

Figura 16. Predicciones (DCN + U-Net sin USRT) a partir de sinogramas
experimentales. (a) Caso E1P. (b) Caso E2P.

Figura 17. Función de error durante el entrenamiento de la U-Net en el
E2P para DCN + U-Net sin información USRT.

firman que la red no logra reconstruir adecuadamente los
contornos, ni es posible distinguir las formas de los objetos
reales.

En este enfoque, la red recibe como entrada las recons-
trucciones obtenidas por el método clásico, y aprende a
filtrar los artefactos y transformar las imágenes para que
sean más cercanas a las verdaderas.

En la Fig. 18 se presentan los resultados en base al con-
junto de datos de testeo. La red logra ajustar sus parámetros
de forma tal que la predicción se aproxima notablemente a
la imagen verdadera, eliminando los artefactos presentes en
la reconstrucción obtenida con USRT.

Figura 18. Comparación entre la imagen verdadera, la salida de la U-Net
y la reconstrucción USRT.

Posteriormente, se evaluó la red sobre reconstrucciones
provenientes de mediciones reales. Como se muestra en la
Fig. 19(a), la U-Net logra preservar las formas geométricas
de los objetos, aunque no consigue eliminar completamente
los artefactos asociados al algoritmo USRT aplicado a
mediciones.

Finalmente, se intentó entrenar la red para que la mis-
ma conserve las componentes de baja frecuencia en las
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Figura 19. Aplicación de la red U-Net sobre reconstrucciones de
mediciones reales. (a) Sin mantener las componentes de baja frecuencia.
(b) Manteniendo las componentes de baja frecuencia.

imágenes de salida. Para este caso, la red fue entrenada con
imágenes objetivo sin filtrado previo. En las predicciones
presentadas en la Fig. 19(b) se observan regiones con textura
no uniforme dentro de los objetos macizos, por lo que la red
no logra conservar de forma precisa las componentes de baja
frecuencia.

VI. COMPARACIÓN DE RESULTADOS

En la Fig. 20 se muestra la imagen de referencia utilizada
para evaluar las distintas arquitecturas. La Fig. 21 presenta
las reconstrucciones obtenidas a partir de un mismo sinogra-
ma, incluyendo los resultados de la U-Net, de la red hı́brida
DCN + U-Net con y sin información USRT y de USRT. A
simple vista, las salidas de la U-Net y de la red hı́brida con
información USRT y E2P son las que más se aproximan a
la imagen verdadera.

Figura 20. Imagen verdadera de referencia.

La Tabla I resume los valores promedio de las métricas
de evaluación, junto con el correspondiente desvı́o estándar:
SSIM, PC, RMSE y PSNR. En todas las métricas, los
mejores valores se obtienen para la red hı́brida (DCN +
U-Net) con información USRT y E2P, seguida de la U-Net,
lo que concuerda con los resultados simulados cualitativos
presentados en la sección anterior.

Por lo tanto, se tiene que tanto la U-Net como la red
hı́brida con información USRT y E2P lograron brindar
reconstrucciones que superan al método USRT en todas las
métricas cuantitativas. Sin embargo, desde una perspectiva
puramente visual, cabe mencionar que un observador podrı́a
reconocer con mayor facilidad la forma original del objeto
en las reconstrucciones obtenidas mediante el método USRT

Figura 21. Comparación de las reconstrucciones obtenidas mediante U-
Net, DCN + U-Net (con y sin información USRT) y USRT.

Topologı́a USRT E2P SSIM PC RMSE PSNR [dB]

DCN
+

U-Net

Sı́ No 0.82 0.39 0.089 21.3
±0.06 ±0.17 ±0.02 ±2.1

Sı́ Sı́ 0.97 0.90 0.039 28
±0.02 ±0.08 ±0.01 ±3

No No 0.83 0.40 0.088 21.3
±0.06 ±0.17 ±0.02 ±2.1

No Sı́ 0.51 0.36 0.109 19.4
±0.09 ±0.14 ±0.02 ±1.6

U-Net - - 0.96 0.89 0.041 28
±0.03 ±0.08 ±0.01 ±3

USRT - - 0.06 0.16 0.124 18.3
±0.06 ±0.07 ±0.02 ±2

Tabla I
MÉTRICAS DE EVALUACIÓN Y SU DESVÍO ESTÁNDAR PARA LAS

DISTINTAS REDES CON EL CONJUNTO DE DATOS DE TESTEO.

que en las generadas por las redes hı́bridas. Si bien este
algoritmo presenta métricas cuantitativas significativamente
inferiores, sus artefactos son sistemáticos y predecibles,
lo que facilita su identificación visual. En cambio, las
redes pueden introducir distorsiones menos familiares, que
dificultan la interpretación de la imagen.

VII. CONCLUSIONES

En este trabajo, se implementaron y compararon los
siguientes enfoques de aprendizaje profundo para la recons-
trucción de imágenes: (i) una red DCN seguida por una
U-Net y (ii) una U-Net aplicada como post-procesamiento
sobre reconstrucciones USRT.
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La arquitectura DCN + U-Net que incorporó información
USRT y E2P alcanzó las mejores métricas cuantitativas. El
E2P permitió que esta arquitectura aprendiera de manera
más efectiva las imágenes objetivo, aprovechando la infor-
mación espacial ya contenida en la reconstrucción USRT.
En segundo lugar se ubicó la U-Net. Al recibir como
entrada una reconstrucción que ya contiene la mayorı́a de
los datos relevantes, la red fue capaz de preservar los
contornos, aunque no logró erradicar en su totalidad los
artefactos presentes. Por el contrario, las variantes que
partieron directamente del sinograma mostraron pérdidas de
detalle y contornos imprecisos, reflejando la dificultad de
predecir los mapas de velocidad sin información espacial
adicional. Aun ası́, las redes hı́bridas superaron al método
USRT en las métricas evaluadas, mostrando el potencial del
aprendizaje profundo para mejorar la calidad y velocidad de
la reconstrucción.

Entre las posibles mejoras se destaca la ampliación y
diversificación del conjunto de datos, incorporando simula-
ciones más realistas para aumentar la robustez del modelo.
En particular, las simulaciones generadas en este trabajo
consideran el modelado de la velocidad del sonido, con
geometrı́as bien definidas y transiciones abruptas entre mate-
riales, mientras que las mediciones reales, presentan hetero-
geneidades internas, bordes irregulares, atenuación acústica
o fenómenos de dispersión, que no se encuentran modelados
en los datos sintéticos generados. Si bien se incorporó ruido
experimental en el dominio temporal para reducir parcial-
mente esta brecha, la ausencia de un modelado explı́cito
de atenuación y de texturas internas constituye una limita-
ción del conjunto sintético utilizado. La incorporación de
simulaciones que contemplen estas propiedades fı́sicas más
realistas permitirı́a reducir el desajuste entre datos sintéticos
y experimentales, favoreciendo ası́ una mejor generalización
del modelo.

También es posible mejorar la sensibilidad del sistema
mediante el uso de una etapa amplificadora sobre la señal de
excitación del transductor, lo que permitirı́a obtener señales
reflejadas de mayor amplitud y generar reconstrucciones
más definidas. Finalmente, futuras lı́neas de trabajo podrı́an
centrarse en la extensión a modelos de generación de datos
sintéticos con mallas tridimensionales y el análisis de su
impacto en la estabilidad y convergencia de la red.
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