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Resumen— En este trabajo se desarrolld un sistema
de reconstruccion de imagenes en el marco de la
tomografia computarizada por ultrasonido, utilizando
técnicas de aprendizaje profundo para la estimacion
de mapas de velocidad, asociados a la propagacion de
ondas acusticas. Se abordé el disefio y entrenamiento
de diferentes arquitecturas de redes neuronales y se
evalué su desempeiio. Para esto, se generé un conjunto
de datos sintético mediante simulaciones y se realiz6 la
adquisicion de sinogramas reales mediante un sistema
experimental que utiliza un transductor de inmersion.
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Abstract— This work developed an image
reconstruction system within the framework of
Ultrasound Computed Tomography, utilizing deep
learning techniques for the estimation of velocity maps
associated with acoustic wave propagation. The design
and training of different neural network architectures
were addressed, and their performance was evaluated.
To this end, a synthetic dataset was generated through
simulations, and the acquisition of real sinograms was
performed using an experimental system that employs
an immersion transducer.
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I. INTRODUCCION

Las técnicas de obtencién de imdgenes médicas permi-
ten visualizar estructuras internas del cuerpo de forma no
invasiva. Entre ellas, la tomografia se destaca por generar
imagenes transversales del cuerpo a partir de mediciones
sobre diferentes dngulos [1], [2]. En particular, la tomo-
graffa computarizada por ultrasonido (TCUS) surge como
una alternativa segura frente a la radiacién ionizante, con
gran potencial para la deteccion temprana del céncer de
mama [3], [4]. A diferencia de la radiografia, el ultrasonido
se ve afectado en gran medida por fenémenos ondulatorios
como reflexidn, refraccién y difraccién [5], [6], lo que
convierte la reconstruccion en un problema inverso no lineal
de alta complejidad [7], [8].
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La TCUS se basa en aplicar un campo actstico conocido
sobre un objeto y analizar el campo transmitido o reflejado
para estimar propiedades del medio, como la velocidad del
sonido o la atenuacién actstica [5], [9]. Estas propiedades
revelan informacién sobre la estructura interna del tejido
y pueden obtenerse mediante distintas configuraciones de
transductores.

Una configuracién tipica para la adquisicion de imigenes
tomogréficas consiste en rodear el objeto con una serie de
transductores, o rotar un transductor alrededor del mismo
para sondear el objeto con ondas de ultrasonido y medir
la interaccidn resultante. La opcién de girar mecdnicamente
un transductor alrededor del objeto tiene la ventaja de ser
una configuracién simple y poco costosa. Por otro lado, la
utilizacién de un arreglo de transductores es generalmente
mads costosa de implementar, pero acelera enormemente el
proceso de adquisicion de datos.

Existen varios algoritmos de reconstrucciéon de imagenes
para obtener el mapa de velocidades del objeto de interés. En
el presente trabajo, se propone un enfoque basado en redes
neuronales para la estimacion de los mapas de velocidad del
sonido. Para tal fin, se ha generado una base de datos sintéti-
ca empleando los algoritmos de simulacion y reconstruccion
utilizados en un estudio previo [10]. Este volumen de datos
sintéticos se cred con el objetivo de entrenar las arquitecturas
de redes neuronales propuestas y, posteriormente, lograr la
reconstruccién del mapa de velocidades asociado a cada
medicién experimental.

II. TOMOGRAFO ACUSTICO 2-D BASADO EN UN UNICO
TRANSDUCTOR

En el desarrollo de sistemas de TCUS, la precision de las
mediciones depende fuertemente del disefio de la configura-
cion experimental. Una arquitectura robusta y simple no sélo
mejora la calidad de los datos, sino que también minimiza
la influencia de factores externos, como ruido, interferen-
cias electromagnéticas, variaciones térmicas y errores sis-
tematicos. Como sistema experimental se utilizé el montaje
desarrollado previamente en el laboratorio del Grupo de
Laser, Optica de Materiales y Aplicaciones Electromagnéti-
cas (GLOmAEge), para la adquisicién de sinogramas [10].
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Figura 1. Esquema de un transductor de inmersion.
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Figura 2. Transformada de Fourier de la sefal emitida por el transductor.

II-A.  Transductor de inmersion

La Fig. 1 muestra un esquema tipico de un transductor
de inmersién. Un transductor convierte sefiales eléctricas
en ondas acusticas y viceversa; su funcién principal es
transmitir energia ultrasénica al medio y recibir los ecos
reflejados. Entre sus componentes, el mds relevante es el
elemento activo piezoeléctrico, que efectiia esa conversion
electrotromecdnica. El piezoeléctrico estd polarizado y co-
nectado mediante electrodos al conector eléctrico exterior;
a su vez, un respaldo absorbente amortigua vibraciones
residuales y la placa de desgaste protege el elemento activo
y ayuda a adaptar la impedancia acustica entre el transductor
y el medio de acoplamiento [11]. Se utiliz6 un trans-
ductor Olympus V306-SU [12], con frecuencia central de
2,25 MHz, patrén de campo no enfocado y didmetro efectivo
de 13 mm. El espectro de la sefial emitida se muestra en la
Fig. 2, donde se observa el pico principal coincidente con
la frecuencia central reportada por el fabricante.

En los sistemas de TCUS, el acoplamiento acustico entre
el transductor y el objeto resulta critico para garantizar
mediciones confiables. En nuestro caso, se utilizé agua
destilada como medio de transmisién del ultrasonido, ya
que su impedancia acustica es similar a la de los tejidos
biolégicos y permite una transmision eficiente de la energia.

II-B.  Configuracion experimental

En la Fig. 3 se muestra la cuba de pléstico acrilico en la
que se realizaron las mediciones. Esta cuenta con orificios
laterales para los transductores, un eje de rotacién conectado
a un motor paso a paso (Newport PRSOCC con controlador
ESP-300), juntas de goma para mantener estanqueidad y
una védlvula de desagiie. Para determinar la velocidad de
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Figura 3. Cuba acrilica utilizada en el sistema de medicién.

sonido se midié la temperatura del agua con un termistor
NTC calibrado en nuestro laboratorio.

En la Fig. 4 se presenta el esquemdtico del sistema de
transmisién y recepcion de ultrasonido. Durante la transmi-
sion, el generador de pulsos (HP 222A) cortos (< 25ns) de
tensién se conecta directamente al transductor, mientras que
durante la recepcién se acopla al amplificador (Picosecond
5828A) a través del conmutador T/R. Las sefiales se registra-
ron con un osciloscopio (Tektronix TDS2024B). El control
y adquisicién de datos se realizaron desde una computadora,
mediante un algoritmo implementado en Python basado en
la libreria PyVISA.
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Figura 4.
ultrasénica.

Esquema del sistema experimental de emisién y deteccion

1I-C. Procedimiento de adquisicion

El generador de pulsos excita el transductor, que emite
una onda ultrasénica a través del agua. Esta sefial interactda
con el objeto bajo estudio, y parte de ella es reflejada hacia
el transductor, que ahora actia como receptor. Una vez
finalizada la emision, la caida de tensién en los terminales
del conmutador T/R desciende por debajo del umbral de
+2 V, lo que provoca que el circuito conmute y permita
el paso de la sefial acustica recibida. Esta sefial atraviesa
el interruptor, se dirige al amplificador y, por ultimo, es
digitalizada por el osciloscopio. Luego de cada adquisicion,
el objeto rota un dngulo controlado por el motor paso a paso.
La temperatura se mide al inicio y al final de cada sesi6n
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para relevar el cambio de la velocidad del sonido durante la
adquisicién de un sinograma.

II-D. Ruido experimental

Se realizaron mediciones sin un objeto presente, a fin
de relevar y caracterizar el ruido que presenta la confi-
guracion. Este ruido puede estar asociado a interferencias
eléctricas, provenientes de equipos o dispositivos externos
al sistema. La Fig. 5 muestra cinco de las mediciones de
ruido obtenidas, digitalizadas por el osciloscopio, junto con
el espectro en frecuencia de cada una de esas sefales. Para el
espectro, se realizé un acercamiento al rango de 0 a 5 MHz,
para visualizar claramente las componentes espectrales con
mayor aporte.
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Figura 5. (a) Ejemplo de sefiales de ruido medidas en ausencia de objeto.
(b) Espectro en frecuencia de las sefiales medidas, con un acercamiento a
un ancho de banda de 10MHz.

El ruido adquiere mayor relevancia para objetos con
indice de refraccion similares al agua o para determinados
angulos de medicién donde la relacién sefial a ruido (SNR)
es baja.

III. REDES NEURONALES PROFUNDAS

III-A. Redes convolucionales densas

Las redes convolucionales densas (DCN) son redes neu-
ronales convolucionales caracterizadas por tener una conec-
tividad densa, a modo de aumentar el flujo de informacién
entre capas. Esta red introduce conexiones directas desde
cada capa a todas las capas posteriores, por lo que cada
instancia recibe como entrada la concatenacion de las salidas
de todas las capas previas. La salida = de la capa ¢ puede
expresarse por la siguiente ecuacion:

ey

donde [zg,x1, ..., x¢—1] Tepresenta la concatenacién de las
salidas producidas por las capas anteriores, y Hy(-) es una
transformacién no lineal. Esta transformacién consiste en
una serie de operaciones convolucionales que pueden estar
acompafiadas por etapas de normalizacién, funciones de
activacion no lineales como ReLU y operaciones de agrupa-
miento (pooling), dependiendo del disefio de la arquitectura.

Ty = Hl([x()vxlv "‘71.271])
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Dado que la concatenacién de (1) no es viable cuando
el tamafio de los mapas de caracteristicas cambia, la red es
dividida en varios bloques densamente conectados, definidos
por la transformacién H,. Entre ellos, se definen capas de
transicién, que incluyen normalizaciones, convoluciones y
agrupamientos para reducir la dimensién de los datos. En la
Fig. 6 se muestra un diagrama en bloques de una red de tipo
DCN, utilizada para la clasificacién de imdgenes. Se observa
que la misma cuenta con tres bloques densos y dos capas de
transicion entre los mismos, las cuales estin compuestas por
una operacién de convolucion (C) para reducir la cantidad
de canales, seguida de una capa de agrupamiento (P) para
reducir la resolucién espacial de cada canal. Ademds, a la
entrada de la red se encuentra una capa de convolucién
para extraer las caracteristicas bdsicas de la imagen y, a
la salida, una capa de agrupamiento seguida de una capa
completamente conectada (L) para obtener la clasificacion
esperada de la imagen de entrada.

Entrata ; . .
t, Bloque Denso 1 Blogue Densa 2 Bloque Denso 3 it s
8% T 2 T e IR e T

Figura 6. Diagrama de una red DCN.

Por otro lado, en los bloques densamente conectados, cada
operaciéon H, produce k£ mapas de caracteristicas, lo que
implica que la capa ¢ tiene ko + k - (¢ — 1) entradas, donde
ko es el numero de canales de entrada. A este hiperpardmetro
k se lo denomina tasa de crecimiento, y su funcién principal
es controlar el incremento progresivo de la informacién
extraida en la red a medida que se agregan capas [13].

III-B.  U-Net

En la Fig. 7 se muestra la otra red usada en este trabajo,
que tiene una arquitectura tipo U-Net [14]. Estas redes
reciben su nombre por la forma de su estructura, ya que
cuentan con un camino descendente, uno ascendente y uno
de conexion entre ambos, resultando en una estructura con
forma de U (ver Fig. 7). El primer camino se denomina
ruta de contraccién (codificador) y estd compuesto por
distintas capas convolucionales, junto con operaciones de
submuestreo, que buscan reducir la resolucién de la entrada,
aumentando la cantidad de canales. De esta manera se
extraen las caracteristicas mas relevantes de la imagen de
entrada para cada resolucién, codificando los datos. Cada
capa de submuestreo reduce la resolucién de la imagen
y aumenta la profundidad o ntimero de canales. El otro
camino se denomina ruta de expansidon (decodificador) y
estd compuesto por capas convolucionales transpuestas, las
necesarias para decodificar los datos hasta su resolucién ori-
ginal. El punto medio entre estos dos caminos se denomina
cuello de botella y es la capa que representa el mayor punto
de abstraccién respecto a la entrada original, ya que los
datos se encuentran en su mixima compresién. Por dltimo,
existen las conexiones de atajo, que son conexiones entre las
distintas rutas que buscan acelerar el entrenamiento y ali-
vianar el problema del desvanecimiento del gradiente [14].
Este problema se presenta cuando los gradientes se vuelven
demasiado pequefios, ya que continian disminuyendo y
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Figura 7. Diagrama de una U-Net.

actualizando pesos de las capas, hasta que se vuelven tan
cercanos a 0 que la red practicamente no se actualiza.

En la Fig. 7, ademds, se presentan los valores de los
pardmetros que caracterizan a esta red utilizados en este
trabajo. Se observa que la entrada posee un tUnico canal,
que es transformado a 16 canales mediante una doble
convoluciéon. A partir de alli, el nimero de canales se
duplica en cada etapa del codificador, pasando de 16 a
32, luego a 64, 128 y finalmente 256 en el cuello de
la red. Cada una de estas etapas reduce la dimension
espacial mediante operaciones de max-pooling. En el camino
del decodificador, las dimensiones espaciales se recuperan
mediante operaciones de sobremuestreo, mientras que el
ndmero de canales se reduce progresivamente a la mitad. En
cada nivel del decodificador, las caracteristicas recuperadas
se concatenan con aquellas provenientes del codificador en
la misma escala, permitiendo preservar tanto la informacién
local como la global. Finalmente, una ultima convolucién
proyecta los 16 canales a la cantidad deseada de canales de
salida.

III-C. Autoencoders variacionales

Los autoencoders son redes neuronales disefiadas para
aprender una representaciéon comprimida de los datos de
entrada y, posteriormente, reconstruirlos. Estdn compuestos
por un codificador, que extrae las variables latentes rele-
vantes; un cuello de botella, que contiene la representacion
comprimida; y un decodificador, que reconstruye la entrada
original a partir de dichas variables.

A diferencia de los autoencoders deterministicos, los
autoencoders variacionales (VAE) aprenden una distribucién
probabilistica continua del espacio latente, en lugar de
una representacion fija. Mediante una reparametrizacion, la
variable latente se define como

e~ N(0,1), 2

Z= g + 0, OF,

donde ® denota la multiplicacién elemento a elemento,
N(0,1I) la distribucién normal estdndar y p, y o, la
media y desviacién estdndar de la distribucién del espacio
latente, respectivamente. Esta formulacién permite separar
los componentes deterministicos y estocdsticos, facilitando
el entrenamiento y la generaciéon de nuevas sefiales [15],
[16].

La Fig. 8 ilustra un esquema general de un VAE: el
codificador produce los pardmetros u, y o, a partir de
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Figura 8. Esquema de un autoencoder variacional.

los cuales se obtiene la variable latente z, que luego el
decodificador utiliza para reconstruir la salida z.

IV. GENERACION DEL CONJUNTO DE DATOS
IV-A.

La generacién de este conjunto de datos sintético se
abord¢d inicialmente creando un conjunto de imdigenes en
blanco y negro, con una resolucién de 200 x 200 pixeles.

Para la representacion de los objetos bajo estudio, se utili-
zaron figuras geométricas bdsicas, especificamente circulos
y poligonos regulares con una cantidad de lados entre 3
y 6 (tridngulos, cuadrados, pentigonos y hexdgonos). Para
cada figura se utilizaron diferentes escalas y angulos de
rotacion aleatorios. Existen tres configuraciones principales
en la generacién de estas figuras:

Imdgenes verdaderas

1. Figuras sélidas: figuras geométricas sin modificacio-
nes internas y posicionadas en el centro de la imagen,
véase Fig. 9(a).

2. Figuras solidas con sustraccion interna: Se parte de
una figura geométrica maciza y luego se sustraen entre
1 y 3 figuras mds pequefias de su interior; estas pueden
ser de cualquiera de los tipos de figuras mencionadas.
La sustraccidn se realiza en distintas posiciones dentro
de la figura principal, generando patrones huecos o
perforados, véase Fig. 9(b).

3. Figuras espejadas: Para cada imagen, se generan
dos figuras del mismo tipo, con diferentes tamafios,
ambas ubicadas alrededor del centro de la imagen y
en cuadrantes opuestos, véase Fig. 9(c).

En total, se generaron 1000 imdgenes destinadas a con-
formar el conjunto de datos de entrenamiento y otras 100
imdgenes para el de testeo.

IV-B. Simulacion de sinogramas

Las imagenes generadas se emplearon para simular sino-
gramas representativos del banco experimental. El algoritmo
desarrollado rota cada imagen y emite un pulso ultrasénico,
registrando las sefiales reflejadas. Para la simulacién acusti-
ca se utiliz6 el programa j-Wave, un simulador numérico
basado en JAX, que permite diferenciaciéon automadtica, pa-
ralelizacién en GPU y resolucidn eficiente de ecuaciones de
onda mediante discretizaciones espectrales o de diferencias
finitas [17], [18].

El dominio de simulacién fue discretizado en una grilla
finita, aplicando condiciones de contorno de Perfectly Mat-
ched Layer (PML) para evitar reflexiones causadas por los
limites del recinto de simulacién. El transductor se model6
como una linea de fuentes puntuales sincronizadas, cuya
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(b)

Figura 9. (a) Figura maciza generada (caso 1). (b) Figura generada con
sustraccion interna (caso 2). (c) Figuras espejadas generadas (caso 3)

aproximacioén es valida siempre que las dimensiones fisicas
del sensor en la configuraciéon experimental sean pequefas
en comparacién con la longitud de onda de las sefales
acusticas. En la Fig. 10 se expone una comparacion del
pulso emitido por el transductor y el simulado, utilizado
en la generacién de sinogramas. Esta tltima fue generada
aplicando una rampa decreciente junto con una ventana
gaussiana a la amplitud de una sefial senoidal de 2.25 MHz,
a modo de aproximar la sefial utilizada al pulso emitido por
el transductor.

— simulada
f\ Medida

Amplitud
o
=

T

05 \

0.0 0.5 10 15 20 5 30 E 2.0
tfus]

Figura 10. Comparacién entre la sefial medida emitida por el transductor
y la simulada.

La velocidad del sonido del medio (vs) y del objeto (v;-)
se asignd a partir de distribuciones uniformes y teniendo
en cuenta las condiciones que se tienen en la configuracion
experimental:

vy ~ U(1480, 1500) m/s
vy ~ U(1600, 1620) m/s

(agua)
(goma)

resultando en indices de refraccion n, € [1.067,1.095]. Para
cada imagen, se generaron tres sinogramas con distintas
combinaciones de velocidades, obteniendo un total de 3000
imdgenes para el conjunto de entrenamiento y 300 para el
de evaluacion.
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Cada simulacién consisti6 en N, = 90 angulos de
rotacién y sefiales temporales de N; = 2500 muestras. El
pulso ultrasénico utilizado replica la sefial medida experi-
mentalmente. El mismo fue generado a partir de aplicar
una rampa decreciente junto con una ventana gaussiana a
la amplitud de una sefial senoidal. Las sefiales reflejadas
obtenidas para cada dngulo conforman los sinogramas.

IV-C. Generacion de ruido coloreado

Para reproducir las condiciones experimentales, se generd
ruido coloreado mediante un VAE entrenado con 270 sefiales
de ruido medidas sin objeto. El modelo aprendi6 la distri-
bucién estadistica del ruido real y permitié sintetizar nuevas
instancias a partir de ruido blanco gaussiano. En la Fig. 11 se
muestran cinco sefiales de ruido generadas por la red, tanto
en el dominio temporal como en el de la frecuencia. Estas
seflales fueron adicionadas a los sinogramas simulados,
obteniendo un conjunto de datos mads representativo del
sistema experimental.

amplitud

Frecuencia [MH2]

Figura 11. (a) Ejemplos de sefiales de ruido generadas por la red VAE
implementada en este trabajo. (b) Espectro en frecuencia de las sefiales
generadas.

IV-D. Algoritmo de reconstruccion cldsico

Se analiz6 la respuesta de las redes implementadas ante
entradas que contienen informacién espacial, compardndolas
con reconstrucciones obtenidas mediante un enfoque clasico.
Para ello, los sinogramas se reconstruyeron utilizando el
algoritmo descrito en [10], el cual modela la propagacién
y detecciéon de ondas actsticas en un medio homogéneo,
adaptado a la geometria circular del sistema. El algoritmo
requiere definir pardmetros experimentales, entre ellos el
desvio estandar del ruido temporal Sp.s. La estimacion
espectral de la sefial reflejada se obtiene segun:

— Pr(f)Pt*(f)
[P(F)I? + Siice”

noise

Sw(f) 3
donde P.(f) y P.(f) representan las transformadas de
Fourier de las sefiales reflejada y emitida, respectivamente.
El término S2 . estabiliza el filtro ante frecuencias con muy

baja amplitud, maximizando la respuesta a ecos coherentes

51 http://elektron.fi.uba.ar



Revista elektron, Vol. 9,

con el pulso transmitido, debido al numerador que calcula la
correlacion cruzada entre la seflal medida y la transmitida.
Cada sinograma es proyectado sobre una grilla bidimen-
sional centrada en el eje de rotacién. Para cada dngulo 6;,
el tiempo de ida y vuelta al pixel (z;,y;) se calcula como:
ta(,0;) = [(RS cos 0;—x;) cos 0+ (R, sin 0 —y;) sin HJ} ,
“)
siendo 6 el angulo de rotacién y R el radio del transductor.
La contribucién de cada dngulo es acumulada segin:

2
Vs

Na
Fy =Y Wy(ta(i, 0;)) AG, )
j=1
obteniéndose la imagen reconstruida F;. A partir de ahora,
este algoritmo se denominard USRT.

Se evaluaron distintos tamafios de imagenes, registrando
la PSNR y el tiempo de cdmputo. Se encontré que imigenes
mayores a 256 x 256 la PSNR no mejora significativamente,
mientras que el tiempo de reconstrucciéon aumenta de forma
considerable. Por este motivo, se adopté 256 x 256 para
generar el conjunto de datos sintéticos de entrenamiento.

La tomografia por reflexién presenta como limitacion la
pérdida de informacién en bajas frecuencias [10]. Por lo
tanto, para emular este efecto, se aplicé un filtro pasa-
altos sobre las imdgenes originales, enfatizando los bordes
y eliminando componentes de baja frecuencia. El filtro se
implementé mediante la convolucién con el kernel de 5 x 5:

-1 -1 -1 -1 -1
-1 1 2 1 -1
-1 2 4 2 -1
-1 1 2 1 -1
-1 -1 -1 -1 -1

Las imagenes filtradas conforman las imdgenes objetivo
del conjunto de datos.

V. REDES IMPLEMENTADAS

Se utilizaron dos topologias para abordar el problema de
reconstruccién de imdgenes tomogréficas. La primera consta
de una arquitectura hibrida, donde se utiliza una red DCN,
cuya salida se encuentra conectada a una U-Net. Esta red
toma como entrada los sinogramas generados y devuelve una
imagen reconstruida con la informacién sobre los contornos
internos y externos del objeto.

Otro enfoque utilizado fue el uso de una red U-Net
para el filtrado de los artefactos presentes en métodos de
reconstruccion clasicos. De esta forma, se buscé que la
red funcione como un filtro que logre discernir entre la
informacién de alta frecuencia correspondiente al objeto y la
correspondiente a los artefactos que introduce el algoritmo.

Las redes se entrenaron utilizando el conjunto de datos
generado y se validaron adicionalmente con mediciones ex-
perimentales. Como funciones de error se emplearon la raiz
cuadratica media (RMSE) y el indice de similitud estructural
para datos de punto flotante (DSSIM) [19] combinadas de
la siguiente forma:

® = aRMSE + 8DSSIM, a=p8=05 (6

Para evaluar el desempeiio del modelo en mediciones
reales, se utilizaron sinogramas obtenidos a partir de la
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configuracién experimental. Las reconstrucciones de estos
sinogramas se exponen en la Fig. 12. Los mismos se
corresponden con mediciones de 90 angulos de una goma
rectangular de tamafio 18,5 mm x 11,6 mm (izquierda) y de
un cilindro de aluminio de 12,7 mm de didmetro (derecha).
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Figura 12. Reconstrucciones de sinogramas obtenidos mediante la
configuracion experimental.

Todos los entrenamientos se realizaron con una compu-
tadora con una CPU Intel i9-10900F, 128 GB de RAM y
dos GPU NVIDIA RTX-3090 de 24 GB cada una.

V-A. DCN + U-Net con informacion USRT

Se evalu6 el desempefio de la red seglin dos variantes.
En primer lugar, se probé introducir el mapa de velocidades
estimado por el algoritmo USRT a la U-Net, como canal
adicional, y luego estimar los mapas de velocidad sin esta
informacion.

A su vez, se evaluaron dos estrategias de entrenamiento:

= Entrenamiento conjunto en un paso (E1P): actuali-
zar todos los pardmetros de a red simultdneamente.

= Entrenamiento en dos pasos (E2P): pre-entrenar la
DCN, fijar sus pesos y entrenar la U-Net.

El entrenamiento se realiz6 en 200 épocas para E1P; en
E2P se emplearon fases separadas para DCN y U-Net, ambas
de 200 épocas cada una. Ademas, se utilizé el optimizador
de Adam para llevar a cabo el aprendizaje de la red.

Dos ejemplos de testeo con datos sintéticos se presentan
en la Fig. 13(a) donde se muestra que la red reduce los
artefactos presentes en la reconstruccion USRT pero con
marcadas irregularidades en los contornos.
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Figura 13. Comparacién (objetivo / prediccién / USRT) para DCN + U-
Net con informacion USRT, con datos sintéticos. (a) Caso E1P. (b) Caso
E2P.
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En la Fig. 14(a) se puede ver que sélo el cilindro metdlico
fue correctamente identificado cuando la red fue aplicada a
mediciones reales.
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Figura 14. Predicciones (DCN + U-Net con USRT) a partir de sinogramas
experimentales. (a) Caso EIP. (b) Caso E2P.

En las Figs. 13(b) y 14(b) se puede apreciar de forma
cualitativa que las predicciones mejoran considerablemente
al modificar el método de entrenamiento a un enfoque E2P,
y que es posible identificar la forma original del objeto
en las mediciones reales, aunque los contornos presenten
irregularidades con respecto al objeto original.

V-B. DCN + U-Net sin informacion USRT

Se entrené nuevamente la red pero esta vez sin incluir la
reconstruccién por USRT como segundo canal a la entrada
de la U-Net. El objetivo fue evaluar si el modelo podia
reconstruir los mapas de velocidad utilizando tnicamente
la informacién proveniente de los sinogramas.

Las predicciones con datos sintéticos (ver Fig. 15(a))
muestran que, si bien se preservan las estructuras generales,
la red no logra definir contornos nitidos.

Con las mediciones experimentales (ver Fig. 16(a)) las
predicciones no presentan mejoras respecto al caso de la
subseccién V-A, mostrando formas indefinidas y ruidosas.
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Figura 15. Comparacion (objetivo / prediccion E2P / USRT) para DCN +
U-Net sin informacion USRT, con datos sintéticos. (a) Caso E1P. (b) Caso
E2P.

mn

En el E2P, la funcién de error mostré grandes saltos
en el error de validacién (ver Fig. 17), lo que evidencia
la dificultad del modelo para generalizar sin informacién
auxiliar de la reconstruccién.

Los resultados obtenidos a partir del conjunto de testeo
(Fig. 15(b)) y de las mediciones reales (Fig. 16(b)) con-
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Figura 16. Predicciones (DCN + U-Net sin USRT) a partir de sinogramas
experimentales. (a) Caso E1P. (b) Caso E2P.

Figura 17. Funcién de error durante el entrenamiento de la U-Net en el
E2P para DCN + U-Net sin informaciéon USRT.

firman que la red no logra reconstruir adecuadamente los
contornos, ni es posible distinguir las formas de los objetos
reales.

En este enfoque, la red recibe como entrada las recons-
trucciones obtenidas por el método cldsico, y aprende a
filtrar los artefactos y transformar las imdgenes para que
sean mds cercanas a las verdaderas.

En la Fig. 18 se presentan los resultados en base al con-
junto de datos de testeo. La red logra ajustar sus parametros
de forma tal que la prediccidn se aproxima notablemente a
la imagen verdadera, eliminando los artefactos presentes en
la reconstruccién obtenida con USRT.
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Figura 18. Comparacion entre la imagen verdadera, la salida de la U-Net
y la reconstrucciéon USRT.

Posteriormente, se evalud la red sobre reconstrucciones
provenientes de mediciones reales. Como se muestra en la
Fig. 19(a), la U-Net logra preservar las formas geométricas
de los objetos, aunque no consigue eliminar completamente
los artefactos asociados al algoritmo USRT aplicado a
mediciones.

Finalmente, se intent6 entrenar la red para que la mis-
ma conserve las componentes de baja frecuencia en las
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Figura 19. Aplicacién de la red U-Net sobre reconstrucciones de
mediciones reales. (a) Sin mantener las componentes de baja frecuencia.
(b) Manteniendo las componentes de baja frecuencia.

imagenes de salida. Para este caso, la red fue entrenada con
imagenes objetivo sin filtrado previo. En las predicciones
presentadas en la Fig. 19(b) se observan regiones con textura
no uniforme dentro de los objetos macizos, por lo que la red
no logra conservar de forma precisa las componentes de baja
frecuencia.

VI. COMPARACION DE RESULTADOS

En la Fig. 20 se muestra la imagen de referencia utilizada
para evaluar las distintas arquitecturas. La Fig. 21 presenta
las reconstrucciones obtenidas a partir de un mismo sinogra-
ma, incluyendo los resultados de la U-Net, de la red hibrida
DCN + U-Net con y sin informacién USRT y de USRT. A
simple vista, las salidas de la U-Net y de la red hibrida con
informacién USRT y E2P son las que mds se aproximan a
la imagen verdadera.
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Figura 20. Imagen verdadera de referencia.

La Tabla I resume los valores promedio de las métricas
de evaluacion, junto con el correspondiente desvio estandar:
SSIM, PC, RMSE y PSNR. En todas las métricas, los
mejores valores se obtienen para la red hibrida (DCN +
U-Net) con informacién USRT y E2P, seguida de la U-Net,
lo que concuerda con los resultados simulados cualitativos
presentados en la seccién anterior.

Por lo tanto, se tiene que tanto la U-Net como la red
hibrida con informacién USRT y E2P lograron brindar
reconstrucciones que superan al método USRT en todas las
métricas cuantitativas. Sin embargo, desde una perspectiva
puramente visual, cabe mencionar que un observador podria
reconocer con mayor facilidad la forma original del objeto
en las reconstrucciones obtenidas mediante el método USRT
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Figura 21. Comparacién de las reconstrucciones obtenidas mediante U-
Net, DCN + U-Net (con y sin informaciéon USRT) y USRT.

Topologia USRT E2P SSIM  PC  RMSE PSNR [dB]
s No 082 039 0089 213
! 4006 40.17  +£0.02 +2.1
DCN si s 097 090 0039 28
+ +0.02 4008 40.01 +3
U-Net
No  No 083 040 0088 213
4006 +0.17 40.02 +2.1
N 5 051 036  0.109 19.4
0 4009 40.14 4002 +1.6
U-Net ] ] 096 089  0.041 28
4003 4008 4001 +3
USRT 006 016  0.124 18.3
. T 4006 4007  +0.02 +2
Tabla I

METRICAS DE EVALUACION Y SU DESVIO ESTANDAR PARA LAS
DISTINTAS REDES CON EL CONJUNTO DE DATOS DE TESTEO.

que en las generadas por las redes hibridas. Si bien este
algoritmo presenta métricas cuantitativas significativamente
inferiores, sus artefactos son sistemdticos y predecibles,
lo que facilita su identificacién visual. En cambio, las
redes pueden introducir distorsiones menos familiares, que
dificultan la interpretacion de la imagen.

VIL

En este trabajo, se implementaron y compararon los
siguientes enfoques de aprendizaje profundo para la recons-
truccién de imdgenes: (i) una red DCN seguida por una
U-Net y (ii) una U-Net aplicada como post-procesamiento
sobre reconstrucciones USRT.

CONCLUSIONES
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La arquitectura DCN + U-Net que incorporé informacién
USRT y E2P alcanz6 las mejores métricas cuantitativas. El
E2P permiti6 que esta arquitectura aprendiera de manera
mds efectiva las imdgenes objetivo, aprovechando la infor-
macién espacial ya contenida en la reconstrucciéon USRT.
En segundo lugar se ubicé la U-Net. Al recibir como
entrada una reconstruccién que ya contiene la mayoria de
los datos relevantes, la red fue capaz de preservar los
contornos, aunque no logré erradicar en su totalidad los
artefactos presentes. Por el contrario, las variantes que
partieron directamente del sinograma mostraron pérdidas de
detalle y contornos imprecisos, reflejando la dificultad de
predecir los mapas de velocidad sin informacién espacial
adicional. Aun asi, las redes hibridas superaron al método
USRT en las métricas evaluadas, mostrando el potencial del
aprendizaje profundo para mejorar la calidad y velocidad de
la reconstruccion.

Entre las posibles mejoras se destaca la ampliacién y
diversificacion del conjunto de datos, incorporando simula-
ciones mads realistas para aumentar la robustez del modelo.
En particular, las simulaciones generadas en este trabajo
consideran el modelado de la velocidad del sonido, con
geometrias bien definidas y transiciones abruptas entre mate-
riales, mientras que las mediciones reales, presentan hetero-
geneidades internas, bordes irregulares, atenuacion acustica
o fendmenos de dispersion, que no se encuentran modelados
en los datos sintéticos generados. Si bien se incorpor6 ruido
experimental en el dominio temporal para reducir parcial-
mente esta brecha, la ausencia de un modelado explicito
de atenuacién y de texturas internas constituye una limita-
cién del conjunto sintético utilizado. La incorporacién de
simulaciones que contemplen estas propiedades fisicas mas
realistas permitiria reducir el desajuste entre datos sintéticos
y experimentales, favoreciendo asi una mejor generalizacion
del modelo.

También es posible mejorar la sensibilidad del sistema
mediante el uso de una etapa amplificadora sobre la sefal de
excitacién del transductor, lo que permitiria obtener sefiales
reflejadas de mayor amplitud y generar reconstrucciones
mas definidas. Finalmente, futuras lineas de trabajo podrian
centrarse en la extensién a modelos de generacién de datos
sintéticos con mallas tridimensionales y el andlisis de su
impacto en la estabilidad y convergencia de la red.
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