
Extracting individual solar cell data from
photovoltaic module electroluminescence images
and current-voltage curves
Extracción de datos de celdas solares individuales a partir de imágenes de
electroluminiscencia de módulos fotovoltaicos y curvas corriente-tensión
Alexia Suca de Azevedo, Matías Córdoba
#2
, Kurt Taretto
#3
#
Departamento de Electrotecnia (Facultad de Ingeniería) – Instituto PROBIEN, Universidad Nacional del Comahue-
CONICET
Neuquén, Argentina
2
matias.cordoba@fain.uncoma.edu.ar
3
kurt.taretto@fain.uncoma.edu.ar
Abstract— Electroluminescence (EL) imaging is explored as
a non-destructive method for quality assessment and
characterization of solar modules. Here, we demonstrate the
acquisition of dark I(V) characteristics for each individual cell
within a solar photovoltaic module from complete module EL
images. This enables a detailed diagnosis of module failure by
individualizing cell parameters, such as series resistance and
dark saturation current density. Such analyses become
increasingly important with module aging, enhancing the
possibilities for module or cell recycling. The method is checked
for consistency with module parameters extracted from the
measured module dark I(V) characteristics.
Keywords: electroluminescence imaging; series resistance;
photovoltaic module characterization.
Resumen— El ensayo de electroluminiscencia (EL) se explora
como un método no destructivo para la evaluación de la calidad
y la caracterización de módulos solares. Aquí, demostramos la
adquisición de la característica I(V) a oscuras para cada celda
individual dentro de un módulo solar fotovoltaico a partir de
imágenes de EL del módulo completo. Esto permite un
diagnóstico detallado de las posibles fallas que pueda presentar
el módulo al individualizar los parámetros de cada celda, como
la resistencia serie y la densidad de corriente de saturación.
Estos análisis son cada vez más importantes con el
envejecimiento del módulo, permitiendo predecir, por ejemplo,
las posibilidades de reciclaje de módulos o celdas. La
consistencia del método se contrasta con los parámetros del
módulo extraídos de la medición de la característica I(V) a
oscuras del módulo.
Palabras clave: ensayo de electroluminiscencia; resistencia
serie; caracterización de módulos fotovoltaicos.
I. INTRODUCTION
Electroluminescence (EL) imaging, combined with dark
I(V) characterization, provides valuable insights into the
structural and electrical properties of photovoltaic modules.
Particularly, EL imaging enables defect detection and local
characterization by means of device parameter mapping [1]-
[3], supplementing global device parameters extracted from
the I(V) characteristics obtained under dark conditions.
In current research on EL imaging, a predominant focus
lies on methods meant for individual solar cells rather than
entire modules, requiring the evaluation of isolated cell data.
An approach that extends this analysis to modules is
presented by Potthoff et al. [4], in which the operating voltage
of individual cells are determined from entire module images.
This analysis allows for a detailed diagnosis of modules not
only at manufacturing but after aging during years of
operation, or to diagnose early module failure.
In this contribution, EL imaging and dark I(V)
characterization are conducted on a polycrystalline silicon
module for in-depth study by extracting individual solar cell
data from the module images. To study cells individually, this
procedure is applied at different injected module currents,
generating a dark I(V) curve for each cell.
Global series resistance values are then calculated from the
resulting cell dark I(V) curves and compared to total module
series resistance to assess the results, showing excellent
agreement. Therefore, this method is validated to obtain the
individual series resistance of a given solar cell in a module,
allowing for a detailed diagnosis of module aging or failure.
Complementarily, we apply a second method that yields
series resistance and dark saturation current density maps of
individual cells in a module, further expanding the
diagnostics capabilities of the technique.
II. THEORY
EL is the emission of photons when a solar cell is subjected
to a forward bias in the absence of solar illumination, i.e. the
opposite of its normal operating condition of converting light
to electricity. The EL emission occurs by the mechanism of
radiative recombination taking place in the semiconductor
material of the cell.
In silicon solar cells, although Auger and defect-assisted
recombination are the predominant mechanisms for
recombination, the level of radiative recombination is still
sufficient to be detectable by an external sensor such as a
CCD camera, delivering images that contain valuable
Revista elektron, Vol. 8, No. 1, pp. 19-24 (2024)
Recibido: 22/04/24; Aceptado: 29/05/24
Cr
eative Commons License - Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
https://doi.org/10.37537/rev.elektron.8.1.191.2024
Student Article