un sistema de detección de malezas en cultivos y en la
d
etección de defectos en una línea de producción de
baldosas cerámicas. En el futuro se espera aplicarla en un
sistema de control parasitario en veterinaria ganadera. Se
comprobó que la disponibilidad del soporte detallado en
este trabajo permitió acortar el tiempo de desarrollo en las
dos aplicaciones realizadas.
Se propone a futuro adaptar la plataforma para incluir la
integración con otros dispositivos de captura como cámaras
con interfaz USB, migración a otras placas de desarrollo e
incorporar capacidades de transmisión de datos y resultados
a través de la interfaz Ethernet.
AGRADECIMIENTOS
Este trabajo fue parcialmente financiado por la SeCAT
de UNICEN (Código de Proyecto 03/C287) y la Secretaría
de Investigación de la Universidad Nacional de Tres de
Febrero.
REFERENCES
[1] J. Wang, Z. Feng, Z. Chen, S. A. George, M. Bala, P. Pillai, S.-
W.Yang, and M. Satyanarayanan, “Edge-based live video analytics
for drones,” IEEE Internet Computing, vol. 23, no. 4, pp. 27–34,
2019.
[2] A. Heredia and G. Barros-Gavilanes, “Video processing inside em-
bedded devices using ssd-mobilenet to count mobility actors,” in
2019 IEEE Colombian Conference on Applications in
Computational Intelligence (ColCACI). IEEE, 2019, pp. 1–6
[3] H. Kavalionak, C. Gennaro, G. Amato, C. Vairo, C. Perciante,C.
Meghini, and F. Falchi, “Distributed video surveillance using smart
cameras,”Journal of Grid Computing, vol. 17, no. 1, pp. 59–77,
2019.
[4] J. Hosseinzadeh and M. Hosseinzadeh, “A comprehensive survey on
evaluation of lightweight symmetric ciphers: hardware and software
implementation,” Advances in Computer Science: an International
Journal, vol. 5, no. 4, pp. 31–41, 2016.
[5] F. Siddiqui, S. Amiri, U. I. Minhas, T. Deng, R. Woods, K.
Rafferty,and D. Crookes, “Fpga-based processor acceleration for
image processing applications,”Journal of Imaging, vol. 5, no. 1, p.
16, 2019.
[6] J. McAllister, “Fpga-based dsp,” in Handbook of Signal Processing
Systems. Springer, 2010, pp. 363–392.
[7] P. Coussy and A. Morawiec,High-level synthesis: from algorithm to
digital circuit. Springer Science & Business Media, 2008.
[8] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Opti-
mizing fpga-based accelerator design for deep convolutional neural
networks,” in Proceedings of the 2015 ACM/SIGDA international
symposium on field-programmable gate arrays, 2015, pp. 161–170.
[9] D. Passaretti, J. M. Joseph, and T. Pionteck, “Survey on fpga in
medical radiology applications: Challenges, architectures and
programming models,” in 2019 International Conference on Field-
Programmable Technology (ICFPT). IEEE, 2019, pp. 279–282.
[10] S. Lahti, P. Sjövall, J. Vanne and T. D. Hämäläinen, "Are We There
Yet? A Study on the State of High-Level Synthesis," in IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 38, no. 5, pp. 898-911, May 2019, doi:
10.1109/TCAD.2018.2834439.
[11] D. G. Bailey, Design for embedded image processing on FPGAs.
John Wiley & Sons, 2011.
[12] D. G. Bailey, “The advantages and limitations of high level
synthesis for FPGA based image processing,” in Proceedings of the
9th International Conference on Distributed Smart Cameras, 2015,
pp. 134–139.
[13] L. Huang, D.-L. Li, K.-P. Wang, T. Gao, and A. Tavares, “A survey
on performance optimization of high-level synthesis tools,” Journal
Of Computer Science and Technology, vol. 35, pp. 697–720, 2020.
[14] M. Qasaimeh and E. N. Salahat, “Real-time image and video
processing using high-level synthesis (hls),” in Handbook of
Research On Advanced Concepts in Real-Time Image and Video
Processing. IGI Global, 2018, pp. 390–408.
[15] M. K. Birla, “Fpga based reconfigurable platform for complex im-
age processing,” in 2006 IEEE International Conference on
Electro/Information Technology. IEEE, 2006, pp. 204–209.
[16] C. Ababei, S. Duerr, W. J. Ebel Jr, R. Marineau, and M.
G.Moghaddam, “Open source digital camera on field programmable
gate arrays,” International Journal of Handheld Computing
Research(IJHCR), vol. 7, no. 4, pp. 30–40, 2016.
[17] C. Ababei, S.Duerr, W.J. Ebel Jr, R. Marineau, “Open source digital
camera on field programmable gate arrays,”International Journal
of Handheld Computing Research(IJHCR), vol. 7, no. 4, pp. 30–
40, 2016.
[18] X. Yang, Y. Zhang, and L. Wu, “A scalable image/video processing
platform with open source design and verification environment,” in
20th International Symposium on Quality Electronic Design
(ISQED).IEEE, 2019, pp. 110–116
[19] Tomás Medina Github repository (2020), Zybo Z7-20 Video
Processing Platform, [Online]. Available: https://github.com/
Tomasmed18/Zybo-Z7-20-Video-Processing-Platform
[20] Zybo Z7 Board Reference Manual, Digilent, Zybo Z7-20, 2018.
[21] Pcam 5C Reference Manual, Digilent,2018
[22] (2020) SportPear Electronics, Raspberry Pi 7 inch HDMI LCD
GPIO Touch (1024*600), [Online]. Available:
http://www.spotpear.com/index/study/detail/id/165.html
[23] MIPI D-PHY Receiver 1.3 IP Core User Guide, Digilent, 2018.
[24] MIPI CSI-2 Receiver 1.1 IP Core User Guide, Digilent, 2018.
[25] Sensor Demosaic v1.0 (Rev. 3), Xilinx, 2018.
[26] Bryce E. Bayer. “Color Imaging Array”. US Patent 3971065, 1976.
[27] Gamma Correction v7.0 LogiCORE IP Product Guide PG004,
Xilinx, 2015.
[28] AXI Video Direct Memory Access V6.3, Xilinx, 2017.
[29] AXI4-Stream to Video Out v4.0, Xilinx, 2017.
[30] RGB-to-DVI (Source) 1.4 IP Core User Guide, Digilent, 2017.
[31] AXI-Interconnect v2.1, Xilinx, 2017.
[32] Team, OpenCV (2018) OpenCV library. [Online]. Available:
https://opencv.org/about.html.
[33] Xilinx OpenCV User Guide UG1233, Xilinx, 2019.
[34] Vivado Design Suite User Guide: High-Level Synthesis, Xilinx,
2018.