[4] N. Aloysius and M. Geetha, “A review on deep convolutional neural
networks,” Proceedings of the 2017 IEEE International Conference
on Communication and Signal Processing, ICCSP 2017, vol. 2018-
Janua, pp. 588–592, 2018, doi: 10.1109/ICCSP.2017.8286426.
[5] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014, doi: 10.48550/ARXIV.
1409.1556. [Online]. Available: https://arxiv.org/abs/1409.1556
[6] A. Shawahna, S. M. Sait, and A. El-Maleh, “FPGA-Based accelerators
of deep learning networks for learning and classification: A review,”
IEEE Access, vol. 7, pp. 7823–7859, 2019, doi: 10.1109/ACCESS.
2018.2890150.
[7] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low
precision weights and activations,” Journal of Machine Learning
Research, vol. 18, pp. 1–30, 2018.
[8] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized Neural Networks: Training Deep Neural Networks with
Weights and Activations Constrained to +1 or -1,” arXiv: Learning,
2016. [Online]. Available: http://arxiv.org/abs/1602.02830
[9] A. Pappalardo, “Xilinx/brevitas,” 2021, doi: 10.5281/zenodo.3333552.
[10] M. Blott, T. B. Preuber, N. J. Fraser, G. Gambardella, K. O’Brien,
Y. Umuroglu, M. Leeser, and K. Vissers, “FinN-R: An end-to-end
deep-learning framework for fast exploration of quantized neural
networks,” ACM Transactions on Reconfigurable Technology and
Systems, vol. 11, no. 3, 2018, doi: 10.1145/3242897.
[11] A. Krizhevsky, “Learning multiple layers of features from tiny im-
ages,” 2009.
[12] N. Urbano Pintos, H. Lacomi, and M. Lavo-
rato, “Bvgg16 - entrenamiento en google colab,”
2022. [Online]. Available: https://colab.research.google.com/drive/
1irvyEzHj7tAvIfV56bFHP50fCNDCHZsu?usp=sharing
[13] NVIDIA, “Tensorrt open source software,” 2022. [Online]. Available:
https://github.com/NVIDIA/TensorRT
[14] XILINX, “Vitis ai - adaptable & real-time ai inference acceleration,”
2022. [Online]. Available: https://github.com/Xilinx/Vitis-AI
[15] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. K
¨
opf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-
performance deep learning library,” Advances in Neural Information
Processing Systems, vol. 32, no. NeurIPS, 2019.
[16] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and
K. Keutzer, “A Survey of Quantization Methods for Efficient Neural
Network Inference,” Low-Power Computer Vision, pp. 291–326, 2022,
doi: 10.1201/9781003162810-13.
[17] Y. Bengio, N. L
´
eonard, and A. Courville, “Estimating or propagating
gradients through stochastic neurons for conditional computation,”
arXiv preprint arXiv:1308.3432, 2013.
[18] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,”
in European conference on computer vision. Springer, 2016, pp.
525–542.
[19] J. Zhang, Y. Pan, T. Yao, H. Zhao, and T. Mei, “dabnn: A super fast
inference framework for binary neural networks on arm devices,” in
Proceedings of the 27th ACM international conference on multimedia,
2019, pp. 2272–2275.
[20] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong,
M. Jahre, and K. Vissers, “FINN: A framework for fast, scalable
binarized neural network inference,” FPGA 2017 - Proceedings of the
2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, no. February, pp. 65–74, 2017, doi: 10.1145/3020078.
3021744.
[21] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,”
Advances in neural information processing systems, vol. 28, 2015.
[22] L. Hou, Q. Yao, and J. T. Kwok, “Loss-aware binarization of deep
networks,” arXiv preprint arXiv:1611.01600, 2016.
[23] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic
Optimization,” 2014, doi: 10.48550/ARXIV.1412.6980. [Online].
Available: https://arxiv.org/abs/1412.6980
[24] A. Mishra and D. Marr, “Apprentice: Using knowledge distilla-
tion techniques to improve low-precision network accuracy,” arXiv
preprint arXiv:1711.05852, 2017.
[25] Y. Xu, X. Dong, Y. Li, and H. Su, “A main/subsidiary network frame-
work for simplifying binary neural networks,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 7154–7162.
[26] R. Gong, X. Liu, S. Jiang, T. Li, P. Hu, J. Lin, F. Yu, and J. Yan,
“Differentiable soft quantization: Bridging full-precision and low-
bit neural networks,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 4852–4861.
[27] O. R. developers, “ONNX Runtime,” 11 2018. [Online]. Available:
https://github.com/microsoft/onnxruntime
[28] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze et al., “{TVM}: An automated {End-
to-End} optimizing compiler for deep learning,” in 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18), 2018, pp. 578–594.
[29] Xilinx, “PyXIR,” 11 2019. [Online]. Available: https://github.com/
Xilinx/pyxir
[30] S. Liu and W. Deng, “Very deep convolutional neural network based
image classification using small training sample size,” Proceedings -
3rd IAPR Asian Conference on Pattern Recognition, ACPR 2015, pp.
730–734, 2016, doi: 10.1109/ACPR.2015.7486599.
[31] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” Journal of Machine Learning Research, vol. 15, pp.
1929–1958, 2014.
[32] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift,”
2015, doi: 10.48550/ARXIV.1502.03167. [Online]. Available: https:
//arxiv.org/abs/1502.03167
Revista elektron, Vol. 6, No. 2, pp. 107-114 (2022)
http://elektron.fi.uba.ar