El sistema internacional de unidades y las mediciones eléctricas

Marcos Eduardo Bierzychudek, Héctor Laiz

Resumen


Constantemente utilizamos los resultados de medidas para comercializar, tomar decisiones, compatibilizar elementos o valorar riesgos. El Sistema Internacional de Unidades (SI) es imprescindible para expresar los resultados de manera clara y comparable. El SI es el resultado de una convención diplomática cuyo objetivo es lograr la compatibilidad internacional de las mediciones para el comercio, la ciencia y el desarrollo sustentable. Recientemente, se aprobó una nueva definición del SI, en la cual el sistema es definido en términos de siete constantes de referencia cuyo valor numérico es establecido por convención. De esta manera, se dejó de lado la definición del kilogramo basada en un artefacto, la definición del ampere basada en un experimento teórico, y la definición del kelvin y del mol basadas en propiedades de sustancias. Ahora, cualquier unidad del sistema puede ser derivada a partir de las constantes de referencia. Esta redefinición tiene como objetivo la estabilidad a largo plazo, la consistencia y la coherencia del sistema, adecuándose a las necesidades de los usuarios y brindado un marco formal para potenciar el crecimiento de la ciencia y la tecnologı́a. En este artículo, se dará especial atención a los efectos de la redefinición en las unidades eléctricas.

Palabras clave


constantes de referencia; mediciones; metrologı́a; Sistema Internacional de Unidades; unidades de base

Texto completo:

PDF HTML

Referencias


Vocabulario Internacional de Metrología — Conceptos fundamentales y generales, y términos asociados, Primera edición en Español, 2008.

Ley 19.511 - Ley de Metrología, marzo 1972.

D. B. Newell, F. Cabiati, J. Fischer, K. Fujii, S. G. Karshenboim, H. S. Margolis, E. de Mirandés, P. J. Mohr, F. Nez, K. Pachucki, T. J. Quinn, B. N. Taylor, M. Wang, B. M. Wood, and Z. Zhang, “The CODATA 2017 values of h, e, k, and n A for the revision of the SI,” Metrologia, vol. 55, no. 1, pp. L13–L16, jan 2018. [Online].Available: https://doi.org/10.1088%2F1681-7575%2Faa950a

9 Conférence Générale des Poids et Mesures, BIPM, 1948. [Online]. Available: https://www.bipm.org/utils/common/pdf/CGPM/CGPM9.pdf#page=64

N.-H. Kaneko, S. Nakamura, and Y. Okazaki, “A review of the quantum current standard,” Measurement Science and Technology, vol. 27, no. 3, p. 032001, feb 2016. [Online]. Available: https://doi.org/10.1088%2F0957-0233%2F27%2F3%2F032001

Resumen de sesión del Comité Internacional de Pesas y Medidas, BIPM, 1947. [Online]. Available: https://www.bipm.org/utils/common/pdf/CIPM-PV-OCR/CIPM1945-1946.pdf

S. P. Benz and C. A. Hamilton, “Application of the josephson effect to voltage metrology,” Proceedings of the IEEE, vol. 92, no. 10, pp. 1617–1629, Oct 2004.

A guide to measuring resistance and impedance below 1 MHz, NPL, 1999.

A. M. Thompson and D. G. Lampard, “A new theorem in electrostatics and its application to calculable standards of capacitance,” Nature, vol. 177, May 1956. [Online]. Available: https://www.nature.com/articles/177888a0

B. Josephson, “Possible new effects in superconductive tunnelling,” Physics Letters, vol. 1, no. 7, pp. 251 – 253, 1962. [Online]. Available: http://www.sciencedirect.com/science/article/pii/0031916362913690

K. v. Klitzing, G. Dorda, and M. Pepper, “New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance,” Phys. Rev. Lett., vol. 45, pp. 494–497, Aug 1980. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.45.494

T. J. Quinn, “News from the BIPM,” Metrologia, vol. 26, no. 1, pp. 69–74, jan 1989. [Online]. Available: https://doi.org/10.1088%2F0026-1394%2F26%2F1%2F006

“The NIST reference on constants, units and uncertainty,” https://physics.nist.gov/cgi-bin/cuu/Value?rk—search for=elecmag_in!, accedido: 22-02-2019.

N. Fletcher, “The role of the magnetic constant, j.10, in the redefinition of the si,” in 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018), July 2018, pp. 1–2.

M. D. Early, “Conceptual consequences of the si,” in 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018), July 2018, pp. 1–2.

Mise en pratique for the definition of the ampere and other electric units in the SI, Consultative Committee for Electricity and Magnetism - BIPM, December 2017. [Online]. Available: https://www.bipm.org/utils/en/pdf/si-mep/MeP-a-2018.pdf

B. M. Wood and S. Solve, “A review of josephson comparison results,” Metrologia, vol. 46, no. 6, p. R13, 2009.

R. Iuzzolino, Procedimiento específico: PEE60, calibración de patrones de tensión usando el efecto Josephson, INTI, Julio 2012. [Online]. Available: http://www.inti.gob.ar/fisicaymetrologia/pdf/pce/pee60.pdf

H series - Vishay foil resistors, Vishay presicion foil, 2010. [Online]. Available: http://www.vishaypg.com/docs/63006/hmetlab.pdf

On the implications of changing the definition of the base unit kelvin - Report to the CIPM 2007, The Consultative Committee for Thermometry - BIPM.

Mise en pratique for the definition of the kelvin in the SI - DRAFT VERSION, Consultative Committee for Thermometry - BIPM, June 2018. [Online]. Available: https://www.bipm.org/utils/en/pdf/simep/MeP-K-2018.pdf

Mise en pratique for the definition of the mole in the SI, Consultative Committee for Amount of Substance – Metrology in Chemistry and Biology - BIPM, June 2018. [Online]. Available: https://www.bipm.org/cc/CCQM/Allowed/22/CCQM16-04 Mole m en p draft 2018.pdf

Mise en pratique for the definition of the kilogram in the SI, Consultative Committee for Mass and Related Quantities - BIPM, July 2018. [Online]. Available: https://www.bipm.org/utils/en/pdf/simep/MeP-kg-2018.pdf

Weights of classes E1, E2, F1, F2, M1, M1–2, M2, M2–3 and M3. Part 1: Metrological and technical requirements, OIML, 2004. [Online]. Available: https://www.oiml.org/en/files/pdf r/r111-1-e04.pdf

G. A. Shaw, “Scaling of mass and force using electrical metrology,”in 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018), July 2018, pp. 1–2.

S. Shapiro, “Josephson currents in superconducting tunneling: The effect of microwaves and other observations,” Phys. Rev. Lett., vol. 11, pp. 80–82, Jul 1963. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.11.80

W. C. Goeke, R. L. Swerlein, S. B. Venzke, and S. D. Stever, “Calibration of an 8 1/2-digit multimeter from only two external standards,” Hewlett-Packard Journal, vol. 40, no. 2, April 1989.

A. Belcher, J. Williams, J. Ireland, R. Iuzzolino, M. E. Bierzychudek, R. Dekker, J. Herick, R. Behr, and K. Schaapman, “Towards a metrology class adc based on josephson junction devices,” Journal of Physics: Conference Series, vol. 1065, no. 5, p. 052044, 2018. [Online]. Available: http://stacks.iop.org/1742-6596/1065/i=5/a=052044

B. Jeanneret and S. Benz, “Application of the josephson effect in electrical metrology,” Eur. Phys. J. Special Topics, vol. 172, pp. 181–206, 2009.

H. E. van den Brom, E. Houtzager, G. Rietveld, R. van Bemmelen, and O. Chevtchenko, “Voltage linearity measurements using a binary josephson system,” Measurement Science and Technology, vol. 18, no. 11, p. 3316, 2007. [Online]. Available: http://stacks.iop.org/0957-0233/18/i=11/a=008

R. Behr, O. Kieler, J. Kohlmann, F. Muller, and L. Palafox, “Development and metrological applications of josephson arrays at ptb,” Meas. Sci. Technol., vol. 32, pp. 124 002–124 021, 2012.

T. J. B. M. Janssen, J. M. Williams, N. E. Fletcher, R. Goebel, A. Tzalenchuk, R. Yakimova, S. Lara-Avila, S. Kubatkin, and V. I. Falḱo, “Precision comparison of the quantum hall effect in graphene and gallium arsenide,” Metrologia, vol. 49, pp. 294–306, 2012.

B. Jeckelmann and B. Jeanneret, “High-precision measurements of the quantized hall resistance: experimental conditions for universality,” Phys. Rev. B, vol. 55, pp. 13 124–34, 1997.

N. Fletcher, “First measurement of the qhe at inti using a potentio-metric method,” in 2006 Conference on Precision Electromagnetic Measurements (CPEM 2006), July 2006, pp. 1–2.

M. Gotz, D. Drung, E. Pesel, H. Barthelmess, C. Hinnrichs, C. Abmann, M. Peters, H. Scherer, B. Schumacher, and T. Schurig, “Improved cryogenic current comparator setup with digital current sources,” IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 4, pp. 1176–1182, April 2009.




DOI: https://doi.org/10.37537/rev.elektron.3.2.81.2019

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia


Copyright (c) 2019 Marcos Eduardo Bierzychudek, Héctor Laiz

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Revista elektron,  ISSN-L 2525-0159
Facultad de Ingeniería. Universidad de Buenos Aires 
Paseo Colón 850, 3er piso
C1063ACV - Buenos Aires - Argentina
revista.elektron@fi.uba.ar
+54 (11) 528-50889