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Abstract— A circuit theory approach is presented for the 
analysis of acoustically coupled spaces. It is based on energy 
flow and balance with a similar analogy to the one used for 
solving dynamic thermal systems, where acoustic power is ana-

log to electric current and acoustic energy density is analog to 
voltage. Room volume is equivalent to capacitor and sound 
absorption is equivalent to a resistor. From these analogies and 
Laplace-transformed models it is possible to get stationary or 
transient response solutions. 
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Resumen— Se propone un enfoque circuital basado en 
flujos de energía para el análisis de espacios acústicamente 
acoplados. En el mismo se establece una analogía similar a la 

que se utiliza en el estudio de sistemas térmicos dinámicos en el 
cual la potencia acústica es análoga a la corriente eléctrica y la 
densidad de energía acústica es análoga a la tensión. Los volú-
menes son equivalentes a capacitores y la absorción sonora es 

asimilable a una resistencia. A partir de estas analogías se pue-
den plantear ecuaciones diferenciales y modelos en transfor-
mada de Laplace y obtener tanto soluciones estacionarias o de 
régimen permanente como transitorias. 
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I. INTRODUCTION 

Physical systems can be represented by different formal 

frameworks. Some of them are block diagrams, graph 

theory [1] and bond graphs [2]. Often the choice of one or 

another depends on the nature of the process and on the kind 

of the desired results. In the case of electric networks, cir-

cuit theory, based on Ohm’s and Kirchhoff’s laws, provides 

an adequate approach because of the simplicity of the 

graphical representation akin to the actual topology of the 

physical system, and the availability of methods to write 

down the equations by simple inspection. The use of the 

Laplace transform allows to easily analyze circuits with 

dynamic components such as capacitors and inductors.  

The degree of maturity of circuit theory and the familiarity 

with its techniques reached by electrical engineers and other 

practitioners has prompted the extension of its principles to 

other specialties such as hydraulics, mechanics and acoustics 

[3]. The general approach is to select two relevant variables 

that can be considered analogous to voltage and electric 

current and identify physical subprocesses where these 

variables are linked. In general, but not always, the variables 

are chosen so that their product has dimension of power. This 

allows, by means of conservative transducers, the transition 

from a physical domain to another, such as is the case of 

electroacoustic equivalent circuits [3]. 

For instance, in the case of mechanical circuits, the 

variables are force and velocity, and in the case of acoustic 

or hydraulic systems, pressure and flow rate (or volume 

velocity). In general there is a flow type variable and a 

force type variable, which are the analogs to current and 

voltage respectively.  

Our purpose is to introduce an equivalent-circuit approach 

applicable to the analysis of acoustically coupled rooms in 

both static and dynamic conditions. 

II. ANALOGIES

In the case of acoustically coupled spaces which we shall 

be dealing with, we will take the acoustic power as the analog 

of current. Should we stick to the rule that the product of the 

two variables has dimension of power, the second variable 

should be non-dimensional, which is not convenient.  

We have the precedent of thermal circuits, in which the 

relevant circuit variables are power and temperature [4], 

whose product has not dimension of power. They are often 

used to estimate the working temperature of electronic 

components (Fig. 1).  

Fig. 1. An example of thermal circuit in which there is a power source (the 

junction), the thermal resistance between the junction and the case, RT jc, 

the thermal resistance between the case and the environment, RT jc, and a 

fixed ambient temperature, Ta. 

In order to select the force variable it will be useful to 

analyze a simple case in steady state (Fig. 2). 

In this example the reverberant field equation holds: 

Ta

RT jc RT ca 

P

a j c 
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Fig. 2. A reverberant room in steady state with an acoustic power source W. 

The power Wabs absorbed at the surfaces and the square effective pressure 

Pef
2 of the reverberant field are shown. V is the volume, S, the surface, and 

α, the absorption coefficient of the room.

W
S

cP
α

α−ρ= )1(4
o

2
ef (1) 

where α is the mean sound absorption coefficient, W the

acoustic power, S the inner area of the room and ρoc the

specific acoustic impedance of air [3].  

While we could use Pef
2
 as the analog of voltage, it is

more convenient to use the acoustic energy density D, 

which is proportional to Pef
2
:

2
o

2
ef

c

P
D

ρ
= . (2) 

This formula is valid for plane waves [3], but a diffuse field as 

we are assuming is the superposition of a large number of 

incoherent plane waves. Thus,  

W
Sc

D
α

α−= )1(4
. (3) 

Given the analogy 

D ↔ V

W ↔ I

we can define an analog to electric resistance, which we 

shall call absorption resistance, as 

ScW

D
R

α
α−== )1(4

abs . (4) 

Now we can draw the first circuit for the reverberant steady 

state (Fig.3). 

Fig. 3. Circuit of the reverberant steady state in a room. 

In the previous example the air absorption, which is 

important for large rooms, was not taken into account. In 

this case (Fig. 4) α can be replaced by a coefficient αtot

given by  

Fig. 4. A reverberant room in steady state, considering the acoustic power 

absorbed by the air. 

S

V4
mtot γ+α=α

. (5) 

where V is the volume, S the area and γm, the coefficient of

absorption in the air, in neper/m [3]. Then 

Sc
R

tot

tot )1(4

α
α−

= . (6) 

It is interesting to note that this resistance can be considered 

as the parallel of two resistances, one of them representing 

the absorption by the surfaces, and the other, by the air. 

Fig. 5. Equivalent circuit for the steady state of the reverberant field in a 

room, including the absorption in the air. 

Because of energy conservation, we have an equivalent of 

Kirchhoff’s first law,  

absair WWW −= . (7)

D
Sc

W
411 tot

tot
air 









α−
α−

α−
α

= . (8) 

We can look for a value α' such that

'1

'

11 tot

tot

α−
α=

α−
α−

α−
α

. (9) 

This value represents a hypothetical surface absorption equiva-

lent to air absorption. Solving for α'

αγ+α−

γ
=α

S

V
S

V

4
)1(

4

'

m
2

m

. (10) 

The distinction between both absorption mechanisms is of 

conceptual interest and also illustrates a direct application of 

Pef
2

V, S, α 

W 

Wabs

RabsW D 

+ 

–

Pef
2

V1, S1, α1

W Wair 

Wabs

RabsW D 

+ 

–

Rair 

Wair Wabs
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circuit theory to this model, but in practice we will work 

directly with 

 absair // RRR = . (11) 

III. COUPLED ROOMS IN STEADY STATE 

We shall next consider two rooms coupled by a small 

opening of area S12 (Fig. 6). 

 
 

 

 

 

 

 

 

 
  

Fig. 6. Coupled rooms with surface and air absorption. In room 1 there is a 

sound source with acoustic power W. S12 is the area of the opening 

connecting both rooms  

 

The power loss in each room is  

 1
tot1

1tot1
1loss

)1(4
D

cS
W

α−
α= , (12) 

 2
tot2

2tot2
loss2

)1(4
D

cS
W

α−
α= . (13) 

On the other hand, the power arriving at each room through 

the opening is given by  

 1
12

12
4

D
cS

W = , (14) 

 2
12

21
4

D
cS

W = . (15) 

The following energy balance holds: 

 WWWW =−+ 2112loss1 , 

  (16) 

 
01221loss2 =−+ WWW

. 

Replacing equations (12) through (15) in (16) we get  
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If, by analogy with equation (6), we introduce the 

following circuit parameters 
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R
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the system of equations (17) can be rewritten as  

 WD
R

D
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System (21) can be interpreted as the resolution of the 

circuit of Fig. 7 by the node potential method.  

 

 

 

 

 

 

 

Fig. 7. Steady-state circuit model for two acoustically coupled rooms. 

 
This system is easily solved, getting  

 

1221

2121
1

)(

RRR

RRR
WD

++
+

=  (22) 

 

1221

21
2

RRR

RR
WD

++
=  (23) 

Circuit analysis allows to get interesting conclusions. 

For instance, from (20) we can see that the smaller the 

opening area the larger R12, hence the weaker the coupling, 

Indeed, from equation (22) it is seen that the energy den-

sity in room 1 practically does not depend on the char-

acteristics of room 2 (as R12 >> R2), while from (23) the 

energy density of the latter will be a small fraction  

(≅ R2/R12) of the energy density in the former. 

IV. ROOMS COUPLED BY A PARTITION 

We shall consider now two rooms coupled by a partition 

whose sound transmission coefficient
1
 is τs. In such case 

equations (14) and (15) will be affected by τs, i.e.,  

 1
12

s12
4

D
cS

W τ= , (24) 

                                                 
1
  The sound transmission coefficient is the ratio of the 

transmitted power to the incident power. 

D1
 

V1, S1, α1 

W Wair1 

Wabs1 
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12

s21
4

D
cS

W τ= . (25) 

from which 

 
cS

R
12s

12
4

τ
= . (26)  

Besides, it will be necessary to take into account the 

absorption coefficient of the partition, which will normally 

be less than 1, affecting also the mean absorption of both 

rooms. 

An interesting example arises in the case of movable 

partition walls used in large rooms to accomplish different 

room distributions such as at conference and exhibition 

centers. Since in general τs is relatively low, coupling is 

weak, but this is compensated because the common area is 

considerable.  

Another typical situation is when there is communication 

through a suspended ceiling in cases in which a larger room 

has been partitioned to get several smaller spaces. 

V. SINGLE ROOM IN DYNAMIC CONDITIONS 

Transient behavior in a room is important at least in three 

situations. The first one is the onset of the sound field, the 

second, the sound decay typical of reverberation, and the 

third, the response to amplitude modulation (modulation 

transfer function), of interest for the analysis of speech 

intelligibility.  

In order to analyze this problem we will start from the 

theoretical energy impulse response, which consists in an 

exponential decay 
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This response is characterized by a time constant τ given 

by 

 

S

VcS

V

4
)1ln(

14

mγ+α−−
=τ . (28) 

In electric circuits this kind of response is associated with 

the discharge of a capacitor through a resistor, so we can 

propose a circuit component similar to a capacitor connected 

as shown in Fig. 8. 
 

 

 

 

 

 

Fig. 8. Equivalent circuit for the reverberant state of a room. 

In order that the time response be the same it is necessary 

that  

 τ=RC , (29) 

where R is given by (6). Solving for C, 
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V

V
C

4
)1ln(

1
m

tot
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For α << 1 we can approximate 

 α≅α−− )1ln( , (31) 

so that 

 

tot1 α−
≅ V

C . (32) 

Sometimes, if αtot << 1, we can approximate  

 VC ≅ . (33) 

As can be noted, the capacity is associated with the room 

volume, which is reasonable. 

VI. COUPLED ROOMS IN DYNAMIC CONDITIONS 

Consider now two coupled rooms in non stationary state. 

Considering the time constant of each room as if they were 

not coupled, we can draw an equivalent circuit such as 

shown in Fig. 9. 

 

 
Fig. 9. Dynamic condition circuit model of two acoustically coupled rooms. 

 

In this case, the node potential equations, written by 

simple inspection, are 
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Note that the equations have been written directly using 

the Laplace transform, avoiding the classic approach with 

differential equations (see, for example, [5], [6]) and 

taking advantage of the techniques that are commonplace 

in circuit analysis. 

The solution of this system of equations is completely 

similar to the static case of equation (21). After some 

algebraic manipulation we get 

R2 W 

D1 

R1 

Wloss1 Wloss2 
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C1 C2 
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As we can see, it is a second-order system and it can be 

shown that its poles are real since it is a completely dissipa-

tive system. This means that there will be a double decay 

slope, which is characteristic of the reverberation of acousti-

cally coupled spaces. The effect will be more noticeable in 

the receiving space, especially if the coupling is weak. 

VII. CONCLUSION 

An approach based on circuit models has been presented for 

the analysis of acoustically coupled spaces. The model uses 

flow and force type analogies, where the flow variable is the 

acoustic power (the analog of the electric current) and the force 

variable is the volume energy density (the analog of voltage). 

This approach allows to represent reverberant acoustic 

systems by means of a model that can be derived by simple 

inspection, in a similar fashion to what is customary in 

electric network analysis. The model is akin to the topology 

of the system. 

 Furthermore, the approach allows to profit from the vast 

collection of resources available for circuit resolution, a 

technique that has been developed for more than a century, 

including computer simulation.  

Particularly interesting is the use of the Laplace trans-

form, which allows to analyze the dynamics of coupled 

rooms, such as transient response and double or multiple 

reverberation slopes.  

 It is possible, for instance, to solve for the slopes of the 

energy impulse response. Of course, one should not be 

tempted to get the impulse response for its use in aural-

ization since only the energy density is obtained. But it 

could be possible to simulate the late response applying the 

energy response to a suitably filtered random noise.  
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