Design and Evaluation of a Hall Sensor with Different Hall Plate Geometries in a 0.5μm CMOS Process

Nicolás Ronis, Mariano Garcia-Inza
Microelectronics Laboratory, Facultad de Ingeniería, Universidad de Buenos Aires
Av. Paseo Colón 850 1st floor, Argentina
Recibido: 31/08/16; Aceptado: 19/06/17

Abstract—An integrated Hall sensor was designed and fabricated in a 0.5μm CMOS ONC5N/F process provided by MOSIS. On it, four different Hall Plate geometries were integrated in order to analyze their sensitivity and resistance over temperature from -40°C up to 165°C. Furthermore, an amplifier and a current spinning system to remove the amplifier and Hall Plate offset were designed and placed in the same chip. The results show a better sensitivity performance in the cross-shaped Hall Plate and a linear behavior of the sensor in the range of operation tested.

Resumen—Un sensor Hall integrado fue diseñado y fabricado en un proceso CMOS ONC5N/F de 0.5μm provisto por MOSIS. Dentro del mismo, cuatro placas Hall con distintas geometrías fueron integradas con el objetivo de analizar su sensibilidad y resistencia desde -40°C hasta 165°C. Dentro del mismo chip también se integraron y diseñaron un amplificador y un sistema de rotación de corriente para remover su offset. Los resultados muestran una mayor sensibilidad en la placa Hall con forma de cruz y un comportamiento lineal del sensor dentro de su rango de operación.

Index Terms—Hall Plate, CMOS design, Solid state magnetic field sensor.

I. INTRODUCTION

A magnetic transducer turns the sensed magnetic field into voltage. They can be found in many applications such as printers, TV, scanners, cell phones, camera modules, etc. They are also very popular in the automotive industry, used for example, as motor speed control and in the power steering and lighting system.

A Hall Plate consists of a doped semiconductor section, defined by a width, a length and a thickness where the Hall effect takes place. It has two pairs of contacts, one for sensing and one for biasing. It can be made of different materials, but, as it will be seen later, lowly doped n-type materials are normally used.

This paper begins with an introduction to the Hall effect, where the basic equations are shown. Section III is focused in Hall Plate offset and the current spinning technique is presented as a technique used to remove both the Hall Plate and amplifier offset. In Section IV the Hall Plates designed, its geometry parameters as well as the amplifier and all the logic needed to apply the current spinning technique are shown. Section V shows the measurements made and their results.

Finally, in Section VI the conclusions of the work are presented.

The integrated circuit was designed using Mentor Graphics tools under the Higher Education Program (HEP). The chip was fabricated through the MOSIS foundry service supported by the MOSIS Educational Program (MEP).

II. HALL EFFECT

The Hall effect was first discovered in 1879 by Edwin Hall [1]. This effect is the manifestation of the Lorentz Force, which will appear over mobile charges exposed to an external magnetic field. This force will push positive and negative charges in opposite directions causing the appearance of a Hall electric field and hence a measurable Hall voltage.

When a Hall Plate is biased with a constant voltage (called voltage driven mode), its sensitivity is defined by [2]

\[S = G \frac{R}{t} \frac{V_{BIAS}}{R} \]

where \(V_{BIAS} \) is the bias voltage, \(G \) is known as the geometrical correction factor of the Hall voltage \((0 < G < 1)\) [3,4] and \(R \) is the Hall Plate resistance, which in the case of a square geometry can be expressed as

\[R = \rho \frac{L}{Wt} = \frac{1}{n\mu_n q Wt} \]

where \(W \) and \(L \) are the width and the length of the Hall Plate respectively, \(\rho \) its resistivity and \(\mu_n \) the electron mobility. In (1), \(R \) is called Hall coefficient given, for an n-type semiconductor, by

\[R = -\frac{r}{qn} \]

where \(n \) is the electron concentration, \(q \) is the electron charge and \(r \) is the Hall factor [2] which is dependent both on temperature and scattering mechanism.

Combining (1), (2) and (3), and dividing by \(V_{BIAS} \) the sensitivity in \([V/G \cdot V_{BIAS}] \) can be expressed as it is shown in (4). There, it can be seen that lowly doped n-type materials are
preferred since they have a higher mobility and thus, a higher sensitivity.

\[
S_V = G_{\text{H}} \tau H \frac{W}{L} \mu_n \tag{4}
\]

III. OFFSET

An ideal Hall Plate can be modeled as a balanced Wheatstone bridge which, in absence of magnetic field, will not show a differential output voltage. However, in a real Hall Plate a differential output voltage will appear. This unwanted signal is called offset \[5\]. Some of its causes are:

- Rotations or translations of the masks used in the fabrication process, which may cause misalignments in the contacts, avoiding them to be in the same equipotential line.
- Variations in the properties of the contacts due to errors in the n-plus implantation, which carries errors in the position, the size and the doping profile.
- The crystal lattice suffers disturbances in the fabrication process. During the dopant implantation, the lattice can be damaged and contaminants might be introduced in the silicon. This could affect the mobility of the carriers.

Taking this into account, the voltage across the bridge can be expressed as the Hall voltage in addition to the offset voltage. Furthermore, when an amplification channel is used, its offset has to be taken into account. In this case, the output can be expressed as

\[
V_{\text{OUT}} = A(V_H + V_{\text{off}} + V_{\text{OA}}) \tag{5}
\]

where \(A\) is the amplifier gain, \(V_H\) the Hall voltage measured in a balanced Hall Plate, \(V_{\text{off}}\) the Hall Plate offset and \(V_{\text{OA}}\) the amplifier offset. To remove the last two, the current spinning technique was used \[6\]. It consists of flowing the current in two opposite directions, called phases, and then averaging the results. In the next section this technique is explained in detail.

A. Hall Plate Offset

The Fig. 1 shows an unbalanced Wheatstone bridge with the current flowing in the two phases.

In the case of Fig. 1(a) the voltage across the bridge can be expressed as

\[
V_{H2} - V_{H1} = V_H|_{90^\circ} + V_{\text{off}}|_{90^\circ} \tag{6}
\]

where

\[
V_{\text{off}}|_{90^\circ} = V_{\text{BIAS}} \left(\frac{1}{2} - \frac{R}{2R + \Delta R} \right) \tag{7}
\]

If now the current is rotated 90\(^\circ\) as in Fig. 1(b) the bridge voltage is

\[
V_{H2} - V_{H1} = V_H|_{0^\circ} + V_{\text{off}}|_{0^\circ} \tag{8}
\]

\[
V_{\text{off}}|_{0^\circ} = V_{\text{BIAS}} \left(\frac{1}{2} + \frac{R}{2R + \Delta R} \right) \tag{9}
\]

Since \(V_H|_{90^\circ}\) and \(V_{\text{off}}|_{90^\circ} = -V_{\text{off}}|_{0^\circ}\), the average of (7) and (9) will remove the offset of the Hall Plate.

B. Amplifier Offset

In Fig.2 a system composed by the amplifier, the bias switches (marked in orange) and the signal switches (marked in blue) that remove the offset of the amplifier is shown. The source \(V_{\text{OA}}\) represents the offset of the amplifier and the digital signal \(CK\) controls the spin phases.

When \(CK = 0\) and an incoming magnetic field (\(B+\)) is applied, the current will flow through the terminals \(H1\) and \(H3\) causing, following the right hand rule, the appearance of the Hall voltage between the terminals \(H2\) and \(H4\) such that

\[
V_{H_{B+}}|_{\text{phase}0} = V_{H2} - V_{H4}. \tag{10}
\]

So, the amplifier output can be expressed as

\[
V_{\text{OUT}_{B+}}|_{\text{phase}0} = A(V_{H_{B+}}|_{\text{phase}0} + V_{\text{OA}} + V_{\text{off}}) \tag{10}
\]

If now \(CK = 1\), with the same positive magnetic field, the current will flow through the terminals \(H2\) and \(H4\), whereas the Hall voltage will appear between \(H3\) and \(H1\),

\[
V_{H_{B+}}|_{\text{phase}90} = V_{H3} - V_{H1}. \tag{11}
\]

So, the output of the amplifier will be

\[
V_{\text{OUT}_{B+}}|_{\text{phase}90} = A(V_{H_{B+}}|_{\text{phase}90} + V_{\text{OA}} - V_{\text{off}}) \tag{11}
\]

Averaging (10) and (11), the Hall Plate offset can be removed from the system

\[
\frac{V_{\text{OUT}_{B+}}|_{\text{phase}0} + V_{\text{OUT}_{B+}}|_{\text{phase}90}}{2} = A(V_{H_{B+}} + V_{\text{OA}}) \tag{12}
\]

If now, an outgoing magnetic field (\(B-\)) is applied, with \(CK = 0\), \(V_{H_{B-}}|_{\text{phase}0} = V_{H4} - V_{H2}\), so

\[
V_{\text{OUT}_{B-}}|_{\text{phase}0} = A(-V_{H_{B-}}|_{\text{phase}0} + V_{\text{OA}} + V_{\text{off}}) \tag{13}
\]
Fig. 2. Current spinning system

and with \(CK = 1 \), \(V_{HRB \ rangle \ phase_{90}} = V_{H1} - V_{H3} \), having at the output of the amplifier

\[
V_{\text{OUTB \ rangle \ phase}_{90}} = A(-V_{HRB \ rangle \ phase_{90}} + V_{OA} - V_{off})
\]

Averaging (13) and (14),

\[
\frac{V_{\text{OUTB \ rangle \ phase}_{90}} + V_{\text{OUTB \ rangle \ phase}_{90}}}{2} = A(-V_{HRB \ rangle} + V_{OA})
\]

Knowing that \(V_{H} = V_{HRB \ rangle} = V_{HRB \ rangle} \), the amplifier offset can be removed using (12) and (15)

\[
A_{V_H} = A\frac{(V_{HR} + V_{OA}) - (V_{HR} + V_{OA})}{2}
\]

In the present work, the average of the four phases was done in order to have a better offset removal.

IV. DESIGN

A. Hall Plates

Four different Hall Plate geometries were designed in a 0.5\(\mu \)m CMOS ONC5N/F process provided by MOSIS.

As it is shown in (4) the mobility plays an important role in the Hall Plate sensitivity. For this reason, an n-type material, N-well for this particular process, was selected for the design.

Some important points had to be considered previous to the design. First, in order to be able to apply the current spinning technique, the Hall Plates must be symmetrical, which means that their sensing and bias contacts must be interchangeable. Second, the contacts should be placed such that they lie in the same equipotential plane in the absence of external magnetic field.

The Hall Plates designed can be seen in Fig. 3 and their geometric parameters in TABLE I.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>HP1</th>
<th>HP2</th>
<th>HP3</th>
<th>HP4</th>
</tr>
</thead>
<tbody>
<tr>
<td>W [(\mu)m]</td>
<td>80</td>
<td>40</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>L [(\mu)m]</td>
<td>80</td>
<td>40</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>W contact [(\mu)m]</td>
<td>5.1</td>
<td>39.1</td>
<td>39.1</td>
<td>3.1</td>
</tr>
<tr>
<td>L contact [(\mu)m]</td>
<td>5.1</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>Arm [(\mu)m]</td>
<td>-</td>
<td>40</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Fig. 3. Designed Hall Plates in a CMOS process. (a) Big square shape. (b) Cross-shaped. (c) Orthogonal square shape. (d) Small square shape.

B. Block diagram

In addition to the Hall Plates, the circuits needed to apply the current spinning technique, to select the desired Hall Plate and the amplifier stage were designed and implemented in the same chip.

The Fig. 4 shows the block diagram of the system designed. The input \(S_{HP} < 1:0 > \), accessible from the outside pins allows us, using two bits, to select the Hall Plate intended to be measured. Once it is selected, the corresponding HP LOGIC block, which contains the circuits needed for the current spinning, is activated. Its block diagram can be seen in the Fig. 5. The block which corresponds to the selected Hall Plate will have the signal \(HP_{EN} = 1 \), whereas in the others this signal will be equal to zero. This was done to disable the Hall Plate that are not going to be measured so they do not affect the system. The input \(VBIAS \), which has a dedicated pin, is used to bias the Hall Plate.
D. Bias switches

They are used to bias the Hall Plate as a function of the selected phase. The outputs H_1, H_2, H_3 and H_4 are directly connected to the Hall Plate as it is shown in Fig. 6.

If, for instance, the phase 0 is chosen, the signal $SF = 00$ in Fig. 5. So at the input of the bias switches block it will be $A = 1$ and $B = C = D = 0$, so the current will flow through the terminals H_1 and H_3 as it can be seen in Fig. 6.

E. Signal Switches

They allow the signal coming from the Hall Plate to pass to the amplifier. The circuit is shown in Fig. 7. In the case of choosing the phase 0, the signal $F_0 = 1$, in Fig. 5, connecting H_2 to $OUT +$ and H_4 to $OUT −$.

F. Instrumentation amplifier

In order to amplify the signal coming from the Hall Plate, an instrumentation amplifier was designed. The schematic can be seen in Fig. 8. Each operational amplifier consists of a two stage amplifier. The differential gain in this kind of amplifiers is given by
where $R_2 = 99\,\Omega$ and $R_1 = 2\,\Omega$ having an $A_v = 100$.

\begin{equation}
A_v = 1 + 2 \frac{R_2}{R_1}
\end{equation}

Since the gain is defined by the ratio of two resistors, which are made in the same material, it will not change over temperature or process.

\textbf{G. Integrated circuit}

The Fig. 9 shows the layout of the chip designed using Mentor Graphics tools. Fig. 10 shows the chip inside its 40 pin package. In Fig. 11 a microphotograph of the fabricated integrated circuit is shown.

\textbf{V. MEASUREMENTS}

The measurements were done placing the chip in a thermal chuck, using a coil to generate the magnetic field in a range of $\pm 15\,\text{mT}$.

Fig. 12 shows the output voltage of the chip for a 4V bias case where it can be seen that the HP2 has a better sensitivity performance. The dots represent the measured values. An approximation curve was constructed using least squares by a second order polynomial to see the linearity of the output. It can be seen that the quadratic terms are negligible showing a linear behavior of the sensor.

Using the package pins we could directly measure the Hall Voltage from the Hall Plates terminals. During these measurements, external and perpendicular magnetic fields were applied with bias voltages of 2V, 3V and 4V. The results are summarized in the TABLE IV and for the case of a 4V bias in Fig. 13. There, it can be seen that, as it was stated before, the HP2 has the best sensitivity with a value of
As in the previous plot, it is shown that the Hall Plate did not introduce any non-linearity and its sensitivity is equal to the values shown in Fig. 12 divided by the amplifier gain.

The Fig. 13 shows the normalized temperature sensitivity calculated using (18) as well as the normalized mobility obtained dividing (19) (which expresses the mobility in terms of the temperature and doping level) [8,9] by the mobility at 25°C.

\[
\text{Normalized Sens} = \frac{\text{Sens at temperature } T}{\text{Sens at } 25^\circ\text{C}}
\]

\[
\mu_n = 88 \left(\frac{300}{T} \right)^{0.57} + \frac{7.4 \times 10^6 T^{-2.33}}{1 + \left(\frac{N_D}{12.65 \times 10^{17}/(300/T)} \right)^{0.88 \left(\frac{300}{T} \right)^{0.146}}}
\]

where \(N_D\) is the doping level and \(T\) is the temperature.

Fig. 14 confirms what it is stated in [2]: in a voltage driven Hall Plate, the sensitivity variation over temperature follows (19). For this particular process, the sensitivity increases 40% at -40°C whereas at 165°C it decreases up to 50% of its value at room temperature.

With these results we can say that the Hall Plates designed showed a linear behavior in the range of the magnetic field tested and up to 4V bias.

To complete the characterization of the Hall Plates, sensitivity and resistance measurements were done in a temperature range from -40°C up to 165°C.

In Fig. 15 a plot of the resistance over temperature can be seen. It shows how the resistance increases with temperature. This is expected since when the temperature increases, the thermal energy of the electrons and the collision rate increase, causing a decrease in the conductivity.

VI. CONCLUSIONS

In the present work a Hall effect sensor with four different Hall Plate geometries in a 0.5 µm ONC5N/F CMOS process provided by MOSIS was designed. A system consisting of a rotated bias and signal switches was implemented in order apply the current spinning technique to remove both the amplifier and the Hall Plate offset.

Sensitivity and resistance measurements were done, from -40°C up to 165°C, showing the cross-shaped Hall Plate a better behavior regarding sensitivity with a value of 40.8μV/mT·VBias. However, taking into account that the Hall Plate presents thermal noise, the HP4 showed a better SNR at the expense of an increase in the current consumption.

TABLE IV
Sensitivity measured for each Hall Plate [7]

<table>
<thead>
<tr>
<th>HALL PLATE</th>
<th>SENSITIVITY [μV/mT·VBias]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP1</td>
<td>30.0</td>
</tr>
<tr>
<td>HP2</td>
<td>40.8</td>
</tr>
<tr>
<td>HP3</td>
<td>30.9</td>
</tr>
<tr>
<td>HP4</td>
<td>36.4</td>
</tr>
</tbody>
</table>

Fig. 13. Hall voltage vs. Magnetic Field for the Hall Plates biased with 4V [7].

Fig. 14. Normalized sensitivity and mobility over temperature [7].

Fig. 15. Hall Plate resistance vs. temperature [7].
The current spinning system designed showed to be a very efficient mechanism to remove the offset and the instrumentation amplifier showed a linearity behavior in the range of operation proving to be efficient to be used in the sensor.

REFERENCES