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Abstract- This paper presents the development of a software tool 
that implements an acquisition block for GPS signals using SDR 
technology, specifically devices like the HackRF One and RTL-
SDR. The tool, implemented in Python, successfully detects 
satellites and estimates their parameters, offering customizable 
algorithm settings and the capability to visualize the satellite 
search space in three dimensions. Comparative tests with the 
GNSS-SDR software tool demonstrated excellent performance, 
providing a solid foundation for further development toward a 
complete SDR-based GNSS receiver. This work highlights the 
potential of SDR platforms for research and development, 
emphasizing their flexibility, potential for future upgrades, and 
cost-effectiveness in advancing future GNSS technologies. 
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Resumen- Este trabajo presenta el desarrollo de una herramienta 
de software que se implementa mediante un bloque de 
adquisición para señales GPS utilizando tecnología de SDR, 
específicamente dirigida a dispositivos como HackRF One y 
RTL-SDR. La herramienta implementada en Python detecta 
satélites y estima sus parámetros con muy buen desempeño, 
ofreciendo configuraciones de algoritmo personalizables y posee 
la capacidad de visualizar el espacio de búsqueda de satélites en 
tres dimensiones. Las pruebas comparativas con la herramienta 
de software GNSS-SDR demostraron un alto rendimiento, 
proporcionando una base sólida para expandir el desarrollo 
hacia un receptor GNSS completo basado en tecnología SDR. En 
esta propuesta se destaca el potencial de las plataformas SDR 
para la investigación y el desarrollo, enfatizando su flexibilidad, 
capacidad de actualización y rentabilidad para avanzar en 
futuras tecnologías GNSS. 

Palabras Claves: GNSS, GPS, Receptor, SDR. 

I. INTRODUCTION

In the last decades, location services through Global 
Navigation Satellite System (GNSS), such as the Global 
Positioning System (GPS), have become an essential feature 
of mobile devices. GPS receivers require a high level of 
integration, low cost, and reduced power consumption [1,2]. 
To achieve these requirements, they are implemented in 
Application Specific Integrated Circuits (ASIC) [3,4]. This 
solution is suitable for applications that only need to know 
the position of the device but limits the user’s ability to 
interact with the architecture, algorithm, or parameters of the 
receiver [5,6]. Due to these limitations, the approach of 
GNSS Receivers implemented in Software Defined Radio 
(SDR) emerged, where all signal processing is done in the 
software domain. This approach allows modifying the 
algorithms or parameters in real-time or in post-processing, 
simply by modifying the receiver software, thus granting a 
high degree of flexibility to the design. The current GNSS 
scenario involves multi-constellation systems, which pose 
the challenge of designing receivers capable of processing 
signals of different characteristics, mitigating interference, 
and providing high-precision positioning, such as Precise 
Point Positioning (PPP). Most current civilian receivers can 
only decode GPS-L1 C/A signals, so research laboratories 
are working on receivers implemented in software [7,8,9]. 
Development and research on SDR-based GNSS receivers 
are expanding due to the flexibility and upgradeability they 
offer, which is crucial for advanced applications and future 
navigation technologies. A notable example is the open-
source GNSS-SDR project of the Center Tecnològic de 
Telecommunications de Catalunya. This program, 
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developed in C++ and combined with GNU-Radio, runs on 
a general-purpose computer and allows selecting between 
different algorithms and accessing intermediate signals, 
which is useful to validate the development of the 
acquisition stage [10,11,12].  
This paper presents the development of a Python-based 
software tool for GPS signal acquisition based on SDR 
devices. The acquisition stage, critical for detecting visible 
satellites and estimating synchronization parameters like 
Doppler shift and code delay, is implemented using 
advanced algorithms and optimized for parallel processing.  
Recent research has highlighted significant advancements in 
signal acquisition and tracking for GPS-based Software-
Defined Radio (SDR) receivers, demonstrating the 
feasibility of using SDR platforms for efficient acquisition 
and tracking stages and the flexibility of SDR in optimizing 
signal algorithms for enhanced performance under varying 
environmental conditions [13,14,15]. This work contributes 
to the field of SDR-based GNSS receivers by providing a 
customizable and user-friendly platform for GPS signal 
acquisition. The tool was fully implemented in Python, due 
to the existence of libraries related to digital signal 
processing and the extensive documentation available [16]. 
Besides, it supports multiple SDR formats and incorporates 
visualization features to enhance usability. Comparative 
tests with the GNSS-SDR software validate its accuracy and 
performance, demonstrating its potential as a foundation for 
a complete SDR-based GNSS receiver capable of multi-
frequency, multi-constellation processing [17,18,19, 
20,21,22,23]. 

II. SYSTEM ARCHITECTURE

Although this development follows the SDR paradigm, the 
proposed diagram shown in Figure 1 is applicable to both 
Application Specific Integrated Circuit (ASIC) and SDR 
implementations. The key difference lies in the approach: in 
an ASIC implementation, all these blocks are hardwired 
using transistors integrated into a single silicon chip, making 
them fixed and unalterable. In contrast, the SDR approach 
employs a reconfigurable radio frequency interface (RF 
Front-End), where the SDR device is responsible for 
converting the analog RF signal from the antenna into digital 
samples. These samples are then processed by a general-
purpose processor, a Digital Signal Processor (DSP), or even 
a Field Programmable Gate Array (FPGA). With ASICs, no  

Fig. 1. GPS receiver block diagram implemented by SDR. 

block can be modified once implemented in hardware, 
whereas SDR implementations allow for the modification of 
any parameter or block in the receiver chain simply by 
adjusting the software. This flexibility provides a significant 
advantage in SDR-based implementations, making them an 
invaluable prototyping tool for DSP engineers, who can 
rapidly test and iterate different architectures or algorithms. 
Figure 1. shows the GPS receiver block diagram based on 
SDR. The antenna used in this work was a GPS commercial 
patch antenna, designed for a frequency of 1575.42 MHz, 
corresponding to the L1 band.  The RF Front-End block was 
implemented using an SDR device which will amplify, filter 
a digitize the analog signal received by the antenna. To 
choose the SDR hardware, we analyzed two options 
available in our laboratory. It’s important to mention that 
both devices are widely used due to their low cost and good 
performance. The commercial HackRF One [24] is a 
versatile SDR platform, designed for both transmission and 
reception of radio signals across a wide frequency range 
from 1 MHz to 6 GHz. This open-source hardware device is 
ideal for testing, developing, and experimenting with a 
broad spectrum of modern and future radio technologies. 
Whether used as a USB peripheral or configured for 
standalone operation, the HackRF One offers flexibility and 
adaptability for a variety of applications, making it a 
valuable tool for hobbyists, researchers, and professionals in 
the field of wireless communications. The RTL-SDR [25] is 
a cost-effective SDR receiver, widely popular among 
hobbyists and professionals for its versatility and ease of 
use. Originating from repurposed USB TV tuner dongles, 
the RTL-SDR can receive frequencies from approximately 
500 kHz to 1.75 GHz. It supports a wide range of 
applications, including radio astronomy, weather satellite 
image reception, ADS-B aircraft tracking, and general radio 
scanning. Its affordability, coupled with an extensive array 
of compatible software, makes the RTL-SDR an excellent 
entry point into the world of SDR for beginners and a 
valuable tool for experienced users. In Table 1, there are the 
main characteristics of both devices.  
Tests were conducted with both devices to evaluate their 
reception capabilities. During the tests with the HackRF, it 
was impossible to achieve a lock on any satellite. After 
several tests, it was concluded that it needs an external clock 
signal because its internal oscillator is not precise enough to 
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process GPS signals, which require 1 ppm (part per million) 
or less. Various software configurations were tried, even 
reducing the frequency and time resolution requirements to 
attempt to achieve a lock, but it was unsuccessful. 
In the tests with the RTL-SDR dongle, excellent results were 
achieved for the acquisition, lock, and decoding of the 
navigation message, successfully obtaining the position 
solution. 
Based on Table 1, it is observed that both devices have a 
suitable frequency range to capture the L1 carrier and both 
have an 8-bit quadrature ADC. Regarding the sampling 
frequency, the RTL-SDR is very close to the Nyquist 
sampling theorem limit, but it satisfies it, unlike the HackRF, 
which far exceeds it. Both have a bias-t, but only the dongle 
has a <1 ppm TCXO. Although the HackRF is a transceiver 
and the RTL-SDR is only a receiver, the application to be 
developed only involves reception, so this characteristic 
does not affect it, but the enormous price difference between 
the two does, precisely due to that functionality. For all the 
reasons mentioned above and based on the tests conducted, 
without making any modifications to the devices, where 
only the RTL-SDR achieved successful reception, we 
believe that the latter best suits our needs. 

TABLE I.  
Comparison of technical characteristics of the SDR devices analyzed 

 
III. METHODOLOGY 

 
A. Signal characteristics  

 
The Digital Signal Processing (DSP) block shown in Figure 
1 consists of three main stages: acquisition, tracking and 
demodulation. In this work we will focus on the acquisition 
stage.  
Each satellite, referred to as a Satellite Vehicle (SV), 
currently has two unique spreading codes or sequences for 
signal transmission. The first one is the unencrypted Coarse 
Acquisition (C/A) code, assigned to civilian use, while the 
second is an encrypted code, known as the P(Y) code, 
designated exclusively for military applications and 
restricted from civilian access. The C/A code is modulated 
only on the L1 carrier frequency, whereas the P(Y) code is 
modulated on both the L1 and L2 carrier frequencies. In this 
study, our focus is on the C/A code, and its spectral 
characteristics are illustrated in the power spectral density 
diagram of the L1 band, as shown in Figure 2. 

 

 
Fig. 2. Power spectral density diagram for the L1 band.[8] 

 
The C/A code is a spread sequence that belongs to the family 
of Gold Codes [26]. These sequences are commonly known 
as pseudo-random codes or Pseudo-Random Noise (PRN) 
because of their apparently random nature. Pseudo-random 
codes are utilized because they do not repeat within their 
sequence, providing highly advantageous correlation 
properties for signal decoding. In the GPS system the C/A 
codes are binary and deterministic pseudo-random 
sequences with noise-like properties. Each code consists of 
1023 chips, with a chip analogous to a bit, however, a chip 
does not carry useful information. These sequences consist 
of 512 ones and 511 zeros and repeat every 1 ms, 
corresponding to a frequency of 1.023 MHz. 
Each SV is assigned a unique PRN code for a specific 
period, which may be updated over time [9]. This code is 
crucial because all satellites transmit simultaneously on the 
same carrier frequency using a Code Division Multiple 
Access (CDMA) scheme. In practice, this is achieved 
through a combination of CDMA and Direct Sequence 
Spread Spectrum (DSSS) technology, resulting in what is 
known as Direct Sequence CDMA (DS-CDMA). This 
encoding technique involves performing a logical Exclusive 
OR (XOR) operation between the PRN code and the data to 
be transmitted. Consequently, the signal is transmitted with 
a bandwidth much broader than that required by the data, 
reducing the power spectral density. The resulting signal 
exhibits a noise-like spectrum, making it undetectable and 
undecodable without the correct PRN code. From all this, 
the transmitted signal for a k satellite is given by:  
 
𝑠𝑘(𝑡) =  √2𝑃𝐶(𝐶𝑘(𝑡) ⊕ 𝐷𝑘(𝑡)) cos(2𝜋𝑓𝐿1𝑡) +

                 √2𝑃𝑃𝐿1(𝑃𝑘(𝑡) ⊕ 𝐷𝑘(𝑡)) sin(2𝜋𝑓𝐿1𝑡)      
                +√2𝑃𝑃𝐿2(𝑃𝑘(𝑡) ⊕ (𝑡)) sin(2𝜋𝑓𝐿2𝑡)       (1)   
 
where, 𝑃𝐶 , 𝑃𝐿1 and  𝑃𝐿2 are the signal power of C/A and P 
(L1 and L2) codes, 𝐶𝑘 and 𝑃𝑘 are the C/A and P (Y) codes 
assigned to the k satellite, 𝐷𝑘  is the navigation data, and 𝑓𝐿1 
and  𝑓𝐿2 are the carrier frequencies L1 and L2. Since in the 

SDR 

Freq. 
Range 
[MHz] 

Sampling 
Rate 

[MHz] 
ADC 
[bits] TCXO 

External 
Clock 

Price 
[US$] 

HackRF 
One 

1-6000 20 8 No Yes 250 

RTL-
SDRv3 

24-1766 3.2 8 Yes No 25 
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present work we will only focus on the C/A code, which is 
modulated in the L1 band, the parameters related to the P 
and L2 codes are canceled. Then, our signal is simplified as 
follows:  
 
𝑠𝑘(𝑡) =  √2𝑃𝐶(𝐶𝑘(𝑡) ⊕ 𝐷𝑘(𝑡)) cos(2𝜋𝑓𝐿1𝑡)       (2)  
 
When propagating from the SV to the receiver in Earth this 
signal is affected for different phenomena., mainly by the 
deviation in the L1 carrier frequency due to the Doppler 
effect and the propagation delay in the C/A code. The 
Doppler effect is the result of the frequency shift caused by 
the relative movement of the transmitter (located on the 
satellite) with respect to the receiver on the ground, even 
though the latter is static. The Doppler shift affects both the 
process acquisition and GPS signal tracking. For a stationary 
receiver, the maximum Doppler shift for the L1 frequency is 
usually considered approximately ±5 KHz, and for a moving 
one ±10 KHz. This effect, and the propagation delay on the 
C/A code in its path from the transmitter to the receiver, are 
two key parameters for the accurate decoding and 
demodulation of the signal at the receiver. The estimation of 
these parameters is the main function of the acquisition 
stage, which is the focus of our study. So, we already know 
the main characteristics of the transmitted signal, then we 
can proceed to design the acquisition stage. 
 

B. Acquisition algorithms 
 
The acquisition stage aims to detect the satellites visible to 
the receiver and obtain a first estimation of Doppler 
deviation and code delay. We can express the received signal 
as a combination of the n visible satellite signals:  
 

𝑠(𝑡) =  𝑠1(𝑡) + 𝑠2(𝑡) + ⋯ + 𝑠𝑛(𝑡)       (3) 
 
Suppose we need to acquire the i satellite. The received 
signal s should be multiplied by a locally generated C/A 
code corresponding to the satellite being tracked. This 
ensures that only if the phase of the local code matches the 
phase of the received signal, meaning both codes are 
perfectly time-aligned, the signals from other satellites, are 
eliminated due to the correlation properties of the C/A codes. 
Similarly, the carrier frequency must be filtered, as it is 
affected by the Doppler shift. Therefore, knowing its exact 
value is necessary for proper filtering. The acquisition 
process can be viewed as a search for these two parameters 
in a two-dimensional space or grid, called the Search Grid. 
The axes of this grid are the Doppler Frequency and the 
Code Delay. Since these parameters are continuous, we must 
set a resolution for discretizing the space. The smallest 
search resolution or step is called a bin, which results in a 
frequency bin and a code bin. A combination of specific bins 

represents a unique position within the search space, known 
as a cell, as shown in Figure 3. To perform the search 
process, a test statistic must be evaluated in each cell. The 
result of this function is then compared to a predefined 
threshold. This comparison determines whether the satellite 
is present and identifies its synchronization parameters. 
 

 
Fig. 3. Algorithm Search Space  
 
A key aspect of any acquisition algorithm is defining the 
dimensions of the search space, the frequency and code 
search ranges, and the resolution between two consecutive 
bins. For the code delay axis, the range is determined by the 
length of the C/A code, specified by the GPS L1 C/A signal 
specification. This code has a length of 1023 chips, starting 
from position 0. The resolution between two consecutive 
bins must be at least one chip, resulting in 1023 code bins. 
However, it is possible to perform a higher-resolution search 
using smaller separations between bins. For the frequency 
axis, the range is typically ± 5 KHz for a static receiver and 
±10 KHz for a moving receiver. The resolution is commonly 
given by frequency bins equal to 1/T, where T is the coherent 
integration time. This implies that as the integration periods 
extend, the width of the frequency bins decreases, enhancing 
the frequency resolution. The improvements in the 
resolution of each axis depend exclusively on the algorithm 
used.  There are different algorithms to perform the search, 
such as Serial Search (SS), Parallel Frequency Space Search 
(PFSS), and Parallel Code Phase Search (PCPS) acquisition, 
the latter being the option chosen in this work. The PCPS 
algorithm, whose block diagram is shown in Figure 4, 
performs the search by going through all possible frequency 
values and parallelizing the search through the code 
parameter, which has a significantly higher number of steps. 
Instead of multiplying the input signal by the local PRN for 
all possible code delays, as SS and PFSS algorithms do, it 
uses the circular cross-correlation technique based on the 
Fourier Transform. This technique relies on the property that 
the Discrete Fourier Transform (DFT) of circular cross-
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correlation is equivalent to the multiplication of the DFT of 
the code and the DFT of the input signal, taking the complex 
conjugate of one of them. Performing the inverse transform 
of this multiplication yields the circular cross-correlation in 
the time domain. The squared magnitude of this result 
represents the test statistic and is compared with a 
predefined threshold to determine if the desired satellite has 
been acquired. If there is a peak in the test statistic, its index 
over the code dimension indicates the delay of the PRN code 
of the input signal for the analyzed frequency. 
 

 
 

Fig. 4. Block Diagram of Parallel Code Phase Search acquisition 
algorithm 
 
This algorithm sweeps only over the frequency dimension, 
that is, across all possible frequencies, which results in the 
number of combinations given by:  
 
𝐹𝑟𝑒𝑞.  𝑅𝑎𝑛𝑔𝑒

𝐹𝑟𝑒𝑞.  𝑆𝑡𝑒𝑝
+ 1 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠      (4)  

 
The algorithm allows for defining the resolution and bin size 
in the frequency dimension. However, this choice is not 
entirely independent, as it depends on the length of the data 
on the DFT, which means the number of samples analyzed, 
and consequently the integration period. The size of a 
frequency bin is commonly defined as follows: 
 

∆𝑓 =
𝑓𝑠

𝑁
=

𝑓𝑠

𝑇. 𝑓𝑠

=
1

𝑇
       (5) 

 
which results in a resolution (the maximum frequency 
separation between two consecutive bins) of 1/2T [12].  For 
example, for integration periods of 1 ms, frequency bins of 
1 kHz are obtained, resulting in a maximum resolution of 
500 Hz. For integration periods of 2 ms, frequency bins of 
500 Hz are obtained, resulting in a maximum resolution of 
250 Hz. To get better resolution, a longer integration period 
must be used to increase the number of DFT samples in 
equation 5. Additionally, the algorithm indirectly improves 
the resolution in the code dimension by increasing the 
number of samples, either by increasing the sampling 

frequency fs or the integration time T, as a correlation value 
is obtained for each sampling instant. For example, using a 
sample rate of 2 MHz and an integration time of 1 ms yields 
2000 samples, representing 2000 bins of code instead of 
1023. That is 2000/1023=1.96 samples for each bin, 
resulting in a resolution of 1/1.96=0.51 between bins. In 
summary, the accuracy of the parameters estimated with this 
algorithm is ±1/2 bin in frequency, and in the code 
dimension, it depends on the sampling frequency. 
A good way to compare the algorithms mentioned above is 
by evaluating the number of combinations each requires and 
the complexity of their implementation, as shown in Table 
2.  
 

TABLE II.  
Results of the comparison between SS, PFSS, and PCPS Acquisition 

algorithms. 
Algorithm Combinations Complexity 

Serial Search Acquisition 41943 Low 
Parallel Frequency Space 
Search Acquisition 1023 Medium 

Parallel Code Phase Search 
Acquisition 41 High 

 
As observed, the Serial Search algorithm performs the worst 
due to the large number of combinations needed compared 
to the other two algorithms. The performance of both 
parallelized algorithms strongly depends on the 
implementation of the DFT. There are many 
implementations for the DFT, the Fast Fourier Transform 
(FFT) stands out as the fastest and most widely used.  
As previously explained, the acquisition process involves 
searching in a two-dimensional grid to determine if the 
target satellite is present in any cell and, if so, obtaining its 
coordinates, which correspond to the synchronization 
parameters Doppler shift and code phase. This requires 
evaluating the test statistic in each cell (SS), column (PFSS), 
or row (PCPS) processed, depending on the algorithm, and 
comparing it with a pre-established threshold to decide if the 
satellite is present. In all three algorithms, the test statistics 
are implemented using the mathematical function "squared 
modulus." There are different ways to find the maximum 
value of the test statistic across the entire search space, 
which will be compared to the threshold. In the chosen 
implementation PCPS, the value corresponding to the 
maximum of the first row (or the first frequency) processed 
is initially stored along with its position on the grid. If the 
statistic for the new analyzed frequency exceeds the stored 
value, the new value is saved; otherwise, the process moves 
to the next frequency. This process continues until all 
frequencies are examined, resulting in the identification of 
the maximum test statistic across the entire search space. 
Calculating the decision threshold is critical for any 
acquisition algorithm. If the threshold value is too low, it 
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leads to more false positives; if too high, it may miss 
detecting satellites. Advanced techniques like the Constant 
False Alarm Rate (CFAR) [27,28] can calculate adaptive 
thresholds, but they add complexity and are beyond the 
scope of this work. Therefore, a fixed threshold of 0.019 is 
implemented, derived from averaging numerous tests under 
various propagation conditions, which can also be modified 
by the user to adapt to different conditions and locations. 
Techniques for determining satellite presence can be 
classified based on the number of times or windows a cell is 
analyzed during a non-coherent integration period: 

• Single-dwell: Analysis is performed only once per 
cell to decide, using a single coherent integration 
window. 

• Multiple-dwell: Analysis is repeated on the same 
cell at regular intervals, with averaging performed 
to decide, using two or more coherent integration 
windows that form a non-coherent integration 
window. The number of coherent integrations and 
the required positive acquisitions (max dwells) 
must be defined for acquisition over the non-
coherent integration window. 

A related parameter is the "dwell time," which is the time 
needed to verify the satellite presence. For single-dwell, it 
equals the coherent integration period; for multiple-dwell, it 
is the product of max dwell and the coherent integration 
time. Figure 5 illustrates a multiple-dwell technique with 
three coherent integration windows. If max dwells are set to 
two, at least two of the three integrations must show positive 
acquisition for cell acquisition. The developed tool allows 
users to choose between single-dwell or multiple-dwell 
decisions, configuring the number of dwells and max dwells 
accordingly. The navigation data is transmitted at 50 bps, 
resulting in a 20 ms period where the bit is set to 1 or -1, 
after which a transition may occur. If a bit of transition 
occurs during the acquisition process, it can cause errors. To 
ensure optimal algorithm performance, no bit transitions 
should occur in the analyzed data sequence. While longer 
data sequences increase the likelihood of successful satellite 
acquisition, they also demand more processing time and 
capacity. Additionally, the frequency resolution, which is 
inversely proportional to the integration time, improves with 
longer integration periods, enhancing the number of DFT 
samples. For all these reasons, the length of the data to be 
analyzed should be chosen carefully. This length should not 
be less than 1 ms, which is the duration of a complete C/A 
code. Using a shorter length would result in correlations 
with incomplete codes, affecting the performance of the 
algorithm. Therefore, the length should be an integer 
multiple of 1 ms. A recommended duration is 2 ms, as 1 ms 
does not provide good frequency resolution. However, in our 
implementation, this parameter can be configured by the 
user for each execution of the program. 

 

 
Fig. 5. Structure of an integration window with multiple dwells  

 
Fig. 6. Block Diagram of the initial version of the implemented algorithm 
 

C. Implementation and Optimization 
 

To implement the proposed algorithm, it is necessary to 
locally generate the PRN code of the satellite to be searched. 
Additionally, a small adjustment to the number of samples 
for each chip is required. The signal samples entering the 
acquisition stage have been sampled by the ADC at a 
specific frequency, in our case 2 MS/s. Therefore: 

𝑚𝑐ℎ𝑖𝑝  [𝑠𝑎𝑚𝑝𝑙𝑒𝑠] =  𝑓𝑠  [
𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑠
] ·  𝑇𝑐ℎ𝑖𝑝[𝑠]          (6)  

 
𝑇𝑐ℎ𝑖𝑝  =  1

𝑓𝑐ℎ𝑖𝑝
⁄           (7)  
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Considering 𝑓𝑠 = 2[𝑀𝐻𝑧] and 𝑇𝑐ℎ𝑖𝑝 = 0.977 [𝜇𝑠] then 
from equation 6 the number of samples per chip will be 
𝑚𝑐ℎ𝑖𝑝 = 2. It follows that for the 1023 C/A code chips, our 
block must generate 1023 · 2 =  2046 samples for each 
C/A code period, as shown below: 
 

𝐶𝐴 =  [𝐶𝐴(1) 𝐶𝐴(1)𝐶𝐴(2)𝐶𝐴(2) . . . 𝐶𝐴(1023) 𝐶𝐴(1023)]    (8) 

The initial version of our algorithm shown in Figure 6 was 
designed to search for only one satellite to validate the 
studied methods. The software tool was developed entirely 
in Python. After the first test, we observed a bottleneck in 
data processing, which significantly increased the 
processing time. To address this issue, we decided to modify 
the data reading process by implementing generating 
functions. These functions generate each data item only 
when it needs to be processed, like lists functions, but 
without keeping the data in memory. The data doesn't exist 
until requested, eliminating the need to load the entire list 
before using it. Generating functions are especially useful 
when dealing with large datasets, where lists can consume 

Fig. 7. Block Diagram of part of the modified version of the algorithm 

significant memory, or when data is received in real-time, 
such as an SDR device, making it impractical to wait for all 
data to arrive before processing. Furthermore, a new 
acquisition strategy was adopted. To detect a satellite that is 
visible at any given second, and assuming it remains visible 
for at least 0.5 to 1 second, it is sufficient to search for it 
once, twice, or multiple times per second, depending on the 
number of integrations selected. It is not necessary to search 
for the satellite in every sample throughout all seconds of 
the file. Once the performance issues with the algorithm 
were resolved, we began the scaling process to search for all 
32 satellites, our main aim. The simplest and fastest way to 

implement this is through a classic for loop, which iterates 
through all the satellites and applies the proposed algorithm 
to each one. The main disadvantage of using a for loop is 
that it was designed to search for a single satellite at a time, 
and in each iteration, the process of reading the input 
samples is repeated, even though the samples are always the 
same. Although it is possible to modify the reading process 
so that it is done only once and then the 32 satellites are 
searched through the loop, it was already observed in the 
first implementation that the processing took a considerable 
amount of time. Furthermore, as is characteristic of the for 
loop, it is a blocking execution which means that we must 
wait for the search for one satellite to finish before starting 
the next one, despite there being no limitations between 
individual searches for each satellite. For these reasons, and 
with a future implementation that can process samples in 
real-time in mind, we decided to investigate different 
parallelization methods at the processor level that allow for 
searching more than one satellite at the same time. This 
approach would also take advantage of the multicore 
architectures of current processors to improve performance. 
Currently, it is common practice to parallelize code by 
isolating a specific function that can be executed multiple 
times and running it on different processors to enable 
processors on a machine, by running independent parallel 

TABLE III.  
Comparison between different methods of Multiprocessing module in 

Python  

 
processes using child processes instead of threads. The 
maximum number of processes that can run at the same time 
is limited by the number of host processors. The 
multiprocessing.Pool() class provides the apply(), map(), 
and starmap() methods to execute the passed function in 
parallel. Choosing the most suitable one for our 
implementation must consider the following parameters: 
multiple arguments, concurrency, blocking and order of 
results. Table 3 presents a summary of the methods and 
parameters mentioned, with the aim of being able to 
compare them. All three methods offer synchronous and 
asynchronous variants. Due to the design of our algorithm, 
it requires a method that can handle multiple arguments and, 
for simplicity, able to return ordered results. According to 

Methodology Multiple 
Arguments 

Concurrence Blocker Sorted 
Results 

Pool.map No Yes Yes Yes 
Pool.map_async No Yes No Yes 
Pool.apply Yes No Yes No 
Pool.apply_sync Yes Yes No No 
Pool.starmap Yes Yes Yes Yes 
Pool.starmap_async Yes Yes No No 
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Table 3, the only method that satisfies these criteria is 
Pool.starmap. To implement this, we first initialize the n 
processors using the Pool class, then pass the functions we 
want to execute in parallel to starmap. In our case, we set 
the number of processors to the total number of system 
processors minus one, to avoid overloading the operating 
system and to prevent potential issues. This is a common 
practice that ensures efficient use of resources when running 
algorithms on platforms with many cores. Then, the 
structure of our initial algorithm is modified as shown in 
Figure 7. 
Another modification, as shown in Figure 7, was also made 
regarding the way of generating the PRN codes belonging to 
each satellite. Previously, a single code belonging to the 
searched satellite had to be generated at the time of 
execution. But when searching for the 32 satellites, instead 
of generating the codes one by one each time, it is 
convenient to pre-allocate or previously generate a list with 
the codes of the 32 satellites, removing this function of the 
interior of the diagram proposed in Figure 6. 
 

IV. RESULTS 
 
To validate our implementation, we compared the obtained 
results with the generated by the GNSS-SDR software tool. 
To achieve this, the developed tool allows to record samples, 
and read raw sample files, whether they were recorded using 
this tool or with the GNSS-SDR software. Due to the 
existence of two different types of sample files, our reading 
function fits to both formats (packaging type, number of 
bytes per sample, sign and amplitude correction factors). 
Furthermore, it has been developed so that, if we need to add 
another type of reading format from a different SDR device, 
it is relatively easy to extend the code if the characteristics 
of the samples are known. 
We chose three cases to compare these tools using GNSS-
SDR format files, modifying two parameters, the coherent 
integration time and the Doppler resolution. The cases 
analyzed are using an Integration time of 1, 2 and 4 [ms] and 
a Doppler resolution of 1000, 500, 250 [Hz], corresponding 
to Case 1, 2 and 3 respectively. The results obtained from 
the comparison are summarized in Table 4.  
As an additional verification method to identify the satellites 
present (excluding their synchronization parameters) 
detected by the developed tool, the GNSS Status application 
for Android devices was used while recording the signal file. 
This application displays real-time information on the 
GNSS satellites present at the location of the device, 
including signal-to-noise ratio, elevation and azimuth 
angles, position, and accuracy, among other parameters. As 
shown in Figure 8, the satellites detected during the file 

recording include satellites 2, 12, 24, 25, and 29. These 
results agree with those obtained by our tool and GNSS-
SDR tool. Although the application lists additional satellites, 
their acquisition is significantly influenced by factors such 
as signal-to-noise ratio, line of sight, and mask angle. 

 
 

Fig. 8. List of Satellites acquired by GNSS Status mobile application while 
recording data samples using RTL-SDR.  
 

TABLE IV. 
Comparison of the results obtained processing the GNSS-SDR input 

format files with GNSS-SDR software tool, and the tool developed in this 
work. 

Case Satellite 
Software Tool 

GNSS-SDR This work 
Doppler Delay Doppler Delay 

1 
2 - - 0 657 

12 1000 1274 1000 797 
29 - - 2000 782 

 
2 

2 -500 1620 -500 657 
12 1000 876 1000 796 
24 -1500 1194 -1500 437 
25 2500 1900 2500 651 
29 2500 1020 2500 781 

 
3 

2 - - -250 657 
12 1000 649 1000 793 
24 -1500 2000 -1500 439 
25 2750 1462 2750 645 
29 2250 385 2250 775 

 
After searching for all the satellites with the tool, it is known 
which of them are present, so that individual searches can be 
carried out for them and the graphical representation of the 
search space can be observed. For example, Figure 9 shows 
the plots obtained by our tool and by GNSSSDR, using an 
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Fig. 9. Three-dimensional plots of the search space for our tool (left column) and GNSS-SDR tool (right column) for Satellite 29 (Top row), Satellite 25 (Middle 
row) and Satellite 1 (Bottom row).
 
integration Time = 2 [ms] and Doppler Resolution = 500 
[Hz], for the individual searches of satellites 29 and 25 both 
present and satellite 1, absent. On the top and middle rows 
of Figure 9, corresponding to satellites 29 and 25 
respectively, we can see that there is a maximum peak on the 
correlation matrix represented in the search space with 
coordinates in the Doppler frequency and delay axes that 
coincide with the values of these parameters previously 
obtained by the tool during the search for all satellites. In 
other words, the acquisition of these satellites has been 
achieved with those synchronization parameters. Also, we 
can see on the bottom row of Figure 9 that the same does not 
apply to satellite 1, which is not found as it is absent. 

 
As shown in Table 4, each execution of the developed tool  
consistently produces the same code delay values for the 
same input file. In contrast, the GNSS-SDR software tool 
yields varying delay values between executions, which do 
not match those produced by our tool. This variability is 
attributed to the internal workings of GNSS-SDR, which is 
designed to operate in real-time across various SDR devices. 
It internally relies on the GNU Radio Scheduler, where each 
processing block runs as quickly as possible. This causes the 
exact execution order to fluctuate based on the machine's 
current load, making the process non-deterministic. 
However, this randomness in execution does not 
significantly affect the final position calculation, resulting 
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only in minor variations in the decimal points of longitude, 
latitude, and altitude. If the hardware environment is known, 
real-time requirements are absent, or a fixed and known 
amount of data is read from a file (buffer size), the sample 
management can be more controlled, allowing for orderly 
and efficient processing. This ensures a deterministic 
workflow, as demonstrated by the     developed tool, where 
the same input consistently produces the same output. 
Additionally, the Doppler frequency results generated by the 
tool are identical to those obtained by GNSS-SDR in every 
execution. 
 

V. CONCLUSIONS 

In this work, a software tool was developed to implement 
the acquisition stage of GPS signals using SDR technology. 
The tool successfully detects satellite signals and their 
associated parameters, allowing users to configure various 
algorithm settings quickly and intuitively. Besides, it 
provides a graphical representation of the satellite search 
space in three dimensions and enables results to be saved for 
further analysis. The tool was fully implemented in Python, 
a widely used programming language in the scientific 
community, which simplifies maintenance and updates. Its 
compatibility ensures that it can run seamlessly on any 
computer with Python installed. The Python code used in 
this study is available in the GitHub repository “PyGNSS-
SDR” [29]. The tool supports input data files in multiple 
formats, including those generated by RTL-SDR and GNSS-
SDR devices, providing flexibility for different research 
scenarios. Validation tests demonstrated excellent 
agreement between the results of the developed tool and 
those obtained using GNSS-SDR software, confirming its 
accuracy and reliability. 
While the tool currently represents only the acquisition 
block of a GNSS receiver, it establishes a robust foundation 
for the development of a complete receiver. The envisioned 
system is intended for applications such as supporting 
Ground-Based Augmentation Systems (GBAS), conducting 
ionospheric scintillation studies, and providing GPS signal 
integrity reports. The use of SDR technology offers a highly 
flexible and cost-effective approach to GNSS receiver 
development, particularly in the current landscape of multi-
constellation systems (GPS, GLONASS, Galileo, Beidou) 
and multi-frequency bands. SDR platforms democratize 
access to GNSS research, enabling researchers and 
developers to engage in this field without the prohibitive 
costs associated with traditional hardware-based 
approaches. The tool developed in this project introduces a 
novel testing framework for GNSS research and 
development in our country. Future work will focus on 
implementing the tracking and demodulation stages, 
extending support to additional frequency bands (L2 and 
L5), and enabling compatibility with other constellations 

(GLONASS, Galileo, Beidou). Other planned advancements 
include integrating adaptive thresholding techniques, such 
as Constant False Alarm Rate (CFAR), for enhanced 
detection threshold calculation. These developments aim to 
further expand the capabilities and applications of the tool 
in GNSS research. 
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